Source code for k1lib.viz

# AUTOGENERATED FILE! PLEASE DON'T EDIT
"""
This module is for nice visualization tools. This is exposed automatically with::

   from k1lib.imports import *
   viz.mask # exposed
"""
import k1lib, base64, io, os, matplotlib as mpl
import k1lib.cli as cli
import matplotlib.pyplot as plt, numpy as np
from typing import Callable, List, Union
from functools import partial, update_wrapper
try: import torch; import torch.nn as nn; hasTorch = True
except:
    torch = k1lib.Object().withAutoDeclare(lambda: type("RandomClass", (object, ), {}))
    nn = k1lib.Object().withAutoDeclare(lambda: type("RandomClass", (object, ), {})); hasTorch = False
__all__ = ["SliceablePlot", "plotSegments", "Carousel", "Toggle", "ToggleImage",
           "Scroll", "confusionMatrix", "FAnim", "mask"]
class _PlotDecorator:
    """The idea with decorators is that you can do something like this::

    sp = k1lib.viz.SliceablePlot()
    sp.yscale("log") # will format every plot as if ``plt.yscale("log")`` has been called

This class is not expected to be used by end users though."""
    def __init__(self, sliceablePlot:"SliceablePlot", name:str):
        """
:param sliceablePlot: the parent plot
:param name: the decorator's name, like "yscale" """
        self.sliceablePlot = sliceablePlot
        self.name = name; self.args, self.kwargs = None, None
    def __call__(self, *args, **kwargs):
        """Stores all args, then return the parent :class:`SliceablePlot`"""
        self.args = args; self.kwargs = kwargs; return self.sliceablePlot
    def run(self): getattr(plt, self.name)(*self.args, **self.kwargs)
[docs]class SliceablePlot: """This is a plot that is "sliceable", meaning you can focus into a particular region of the plot quickly. A minimal example looks something like this:: import numpy as np, matplotlib.pyplot as plt, k1lib x = np.linspace(-2, 2, 100) def normalF(): plt.plot(x, x**2) @k1lib.viz.SliceablePlot.decorate def plotF(_slice): plt.plot(x[_slice], (x**2)[_slice]) plotF()[70:] # plots x^2 equation with x in [0.8, 2] So, ``normalF`` plots the equation :math:`x^2` with x going from -2 to 2. You can convert this into a :class:`SliceablePlot` by adding a term of type :class:`slice` to the args, and decorate with :meth:`decorate`. Now, every time you slice the :class:`SliceablePlot` with a specific range, ``plotF`` will receive it. How intuitive everything is depends on how you slice your data. ``[70:]`` results in x in [0.8, 2] is rather unintuitive. You can change it into something like this:: @k1lib.viz.SliceablePlot.decorate def niceF(_slice): n = 100; r = k1lib.Range(-2, 2) x = np.linspace(*r, n) _slice = r.toRange(k1lib.Range(n), r.bound(_slice)).slice_ plt.plot(x[_slice], (x**2)[_slice]) # this works without a decorator too btw: k1lib.viz.SliceablePlot(niceF) niceF()[0.3:0.7] # plots x^2 equation with x in [0.3, 0.7] niceF()[0.3:] # plots x^2 equation with x in [0.3, 2] The idea is to just take the input :class:`slice`, put some bounds on its parts, then convert that slice from [-2, 2] to [0, 100]. Check out :class:`k1lib.Range` if it's not obvious how this works. A really cool feature of :class:`SliceablePlot` looks like this:: niceF().legend(["A"])[-1:].grid(True).yscale("log") This will plot :math:`x^2` with range in [-1, 2] with a nice grid, and with y axis's scale set to log. Essentially, undefined method calls on a :class:`SliceablePlot` will translate into ``plt`` calls. So the above is roughly equivalent to this:: x = np.linspace(-2, 2, 100) plt.plot(x, x**2) plt.legend(["A"]) plt.grid(True) plt.yscale("log") .. image:: images/SliceablePlot.png This works even if you have multiple axes inside your figure. It's wonderful, isn't it?""" def __init__(self, plotF:Callable[[slice], None], slices:Union[slice, List[slice]]=slice(None), plotDecorators:List[_PlotDecorator]=[], docs=""): """Creates a new SliceablePlot. Only use params listed below: :param plotF: function that takes in a :class:`slice` or tuple of :class:`slice`s :param docs: optional docs for the function that will be displayed in :meth:`__repr__`""" self.plotF = plotF self.slices = [slices] if isinstance(slices, slice) else slices self.docs = docs; self.plotDecorators = list(plotDecorators)
[docs] @staticmethod def decorate(f): """Decorates a plotting function so that it becomes a SliceablePlot.""" answer = partial(SliceablePlot, plotF=f) update_wrapper(answer, f) return answer
@property def squeezedSlices(self) -> Union[List[slice], slice]: """If :attr:`slices` only has 1 element, then return that element, else return the entire list.""" return k1lib.squeeze(self.slices) def __getattr__(self, attr): if attr.startswith("_"): raise AttributeError() # automatically assume the attribute is a plt.attr method dec = _PlotDecorator(self, attr) self.plotDecorators.append(dec); return dec def __getitem__(self, idx): if type(idx) == slice: return SliceablePlot(self.plotF, [idx], self.plotDecorators, self.docs) if type(idx) == tuple and all([isinstance(elem, slice) for elem in idx]): return SliceablePlot(self.plotF, idx, self.plotDecorators, self.docs) raise Exception(f"Don't understand {idx}") def __repr__(self, show=True): self.plotF(self.squeezedSlices) for ax in plt.gcf().get_axes(): plt.sca(ax) for decorator in self.plotDecorators: decorator.run() if show: plt.show() return f"""Sliceable plot. Can... - p[a:b]: to focus on a specific range of the plot - p.yscale("log"): to perform operation as if you're using plt{self.docs}"""
[docs]def plotSegments(x:List[float], y:List[float], states:List[int], colors:List[str]=None): """Plots a line graph, with multiple segments with different colors. Idea is, you have a normal line graph, but you want to color parts of the graph red, other parts blue. Then, you can pass a "state" array, with the same length as your data, filled with ints, like this:: y = np.array([ 460800, 921600, 921600, 1445888, 1970176, 1970176, 2301952, 2633728, 2633728, 3043328, 3452928, 3452928, 3457024, 3461120, 3463680, 3463680, 3470336, 3470336, 3467776, 3869184, 3865088, 3865088, 3046400, 2972672, 2972672, 2309632, 2504192, 2504192, 1456128, 1393664, 1393664, 472576]) s = np.array([1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1]) plotSegments(None, y, s, colors=["tab:blue", "tab:red"]) .. image:: images/plotSegments.png :param x: (nullable) list of x coordinate at each point :param y: list of y coordinates at each point :param states: list of color at each point :param colors: string colors (matplotlib color strings) to display for each states""" if x is None: x = range(len(y)) if colors is None: colors = ["tab:blue", "tab:red", "tab:green", "tab:orange", "tab:purple", "tab:brown"][:len(x)] _x = []; _y = []; state = -1; count = -1 # stretchs, and bookkeeping nums lx = None; ly = None # last x and y from last stretch, for plot autocompletion while count + 1 < len(x): count += 1 if state != states[count]: if len(_x) > 0 and state >= 0: if lx != None: _x = [lx] + _x; _y = [ly] + _y plt.plot(_x, _y, colors[state]); lx = _x[-1]; ly = _y[-1] _x = [x[count]]; _y = [y[count]]; state = states[count] else: _x.append(x[count]); _y.append(y[count]) if len(_x) > 0 and state >= 0: if lx != None: _x = [lx] + _x; _y = [ly] + _y plt.plot(_x, _y, colors[state])
[docs]class Toggle(cli.BaseCli): _idx = k1lib.AutoIncrement.random()
[docs] def __init__(self): """Button to toggle whether the content is displayed or not. Useful if the html content is very big in size. Example:: x = np.linspace(-2, 2); plt.plot(x, x ** 2) plt.gcf() | toImg() | toHtml() | viz.Toggle() This will plot a graph, then create a button where you can toggle the image's visibility""" self.content:str = "" # html string
[docs] def __ror__(self, it): self.content = it; return self
def _repr_html_(self): pre = f"k1t_{Toggle._idx()}" html = f"""<!-- k1lib.Toggle --> <style> #{pre}_btn {{ cursor: pointer; padding: 6px 12px; background: #eee; margin-right: 5px; color: #000; user-select: none; -webkit-user-select: none; /* Safari */ -ms-user-select: none; /* IE 10+ */ box-shadow: 0 3px 5px rgb(0,0,0,0.3); border-radius: 18px; }} #{pre}_btn:hover {{ box-shadow: 0 3px 5px rgb(0,0,0,0.6); background: #4caf50; color: #fff; }} </style> <div> <div style="display: flex; flex-direction: row; padding: 4px"> <div id="{pre}_btn">Show content</div> <div style="flex: 1"></div> </div> <div id="{pre}_content" style="display: none; margin-top: 12px">{self.content}</div> </div> <script> console.log("setup script ran for {pre}"); {pre}_btn = document.querySelector("#{pre}_btn"); {pre}_content = document.querySelector("#{pre}_content"); {pre}_displayed = false; {pre}_btn.onclick = () => {{ {pre}_displayed = !{pre}_displayed; {pre}_btn.innerHTML = {pre}_displayed ? "Hide content" : "Show content"; {pre}_content.style.display = {pre}_displayed ? "block" : "none"; }}; </script>""" return html
[docs]def ToggleImage(): """This function is sort of legacy. It's just ``img | toHtml() | viz.Toggle()`` really""" return cli.toHtml() | Toggle()
[docs]class Scroll(cli.BaseCli): _idx = k1lib.AutoIncrement.random()
[docs] def __init__(self, height=300): """Creates a new preview html component. If content is too long, then it will only show the first 500px, then have a button to expand and view the rest. Example:: x = np.linspace(-2, 2); plt.plot(x, x ** 2) plt.gcf() | toImg() | toHtml() | viz.Scroll() This will plot a preview of a graph :param height: height of the parent container""" self.content:str = "" # html string self.height = height
[docs] def __ror__(self, it): self.content = it; return self
def _repr_html_(self): pre = f"k1scr_{Scroll._idx()}" html = f"""<!-- k1lib.Scroll --> <div style="max-height: {self.height}px">{self.content}</div>""" return html
[docs]def confusionMatrix(matrix:torch.Tensor, categories:List[str]=None, **kwargs): """Plots a confusion matrix. Example:: k1lib.viz.confusionMatrix(torch.rand(5, 5), ["a", "b", "c", "d", "e"]) .. image:: images/confusionMatrix.png :param matrix: 2d matrix of shape (n, n) :param categories: list of string categories :param kwargs: keyword args passed into :meth:`plt.figure`""" if isinstance(matrix, torch.Tensor): matrix = matrix.numpy() if categories is None: categories = [f"{e}" for e in range(len(matrix))] fig = plt.figure(**{"dpi":100, **kwargs}); ax = fig.add_subplot(111) cax = ax.matshow(matrix); fig.colorbar(cax) with k1lib.ignoreWarnings(): ax.set_xticklabels([''] + categories, rotation=90) ax.set_yticklabels([''] + categories) # Force label at every tick ax.xaxis.set_major_locator(mpl.ticker.MultipleLocator(1)) ax.yaxis.set_major_locator(mpl.ticker.MultipleLocator(1)) ax.xaxis.set_label_position('top') plt.xlabel("Predictions"); plt.ylabel("Ground truth")
[docs]def FAnim(fig, f, frames, *args, **kwargs): """Matplotlib function animation, 60fps. Example:: # line below so that the animation is displayed in the notebook. Included in :mod:`k1lib.imports` already, so you don't really have to do this! plt.rcParams["animation.html"] = "jshtml" x = np.linspace(-2, 2); y = x**2 fig, ax = plt.subplots() plt.close() # close cause it'll display 1 animation, 1 static if we don't do this def f(frame): ax.clear() ax.set_ylim(0, 4); ax.set_xlim(-2, 2) ax.plot(x[:frame], y[:frame]) k1lib.FAnim(fig, f, len(x)) # plays animation in cell :param fig: figure object from `plt.figure(...)` command :param f: function that accepts 1 frame from `frames`. :param frames: number of frames, or iterator, to pass into function""" return partial(mpl.animation.FuncAnimation, interval=1000/30)(fig, f, frames, *args, **kwargs)
from k1lib.cli import op
[docs]def mask(img:torch.Tensor, act:torch.Tensor) -> torch.Tensor: """Shows which part of the image the network is focusing on. :param img: the image, expected to have dimension of (3, h, w) :param act: the activation, expected to have dimension of (x, y), and with elements from 0 to 1.""" *_, h, w = img.shape mask = act[None,] | nn.AdaptiveAvgPool2d([h//16, w//16]) | nn.AdaptiveAvgPool2d([h//8, w//8]) | nn.AdaptiveAvgPool2d([h, w]) return mask * img | op().permute(1, 2, 0)