Source code for k1lib.knn

# AUTOGENERATED FILE! PLEASE DON'T EDIT
"""
Some nice utils to complement :mod:`torch.nn`. This is exposed automatically
with::

   from k1lib.imports import *
   knn.Lambda # exposed
"""
from typing import Callable, Any; import k1lib
try: import torch; from torch import nn; hasTorch = True
except: nn = k1lib.Object().withAutoDeclare(lambda: type("RandomClass", (object, ), {})); hasTorch = False
__all__ = ["Lambda", "Identity", "LinBlock", "MultiheadAttention"]
[docs]class Lambda(nn.Module):
[docs] def __init__(self, f:Callable[[Any], Any]): """Creates a simple module with a specified :meth:`forward` function.""" super().__init__(); self.f = f
[docs] def forward(self, x): return self.f(x)
[docs]class Identity(Lambda): """Creates a module that returns the input in :meth:`forward`""" def __init__(self): super().__init__(lambda x: x)
[docs]class LinBlock(nn.Module):
[docs] def __init__(self, inC, outC): """Linear layer with relu behind it""" super().__init__(); self.lin = nn.Linear(inC, outC); self.relu = nn.LeakyReLU()
[docs] def forward(self, x): return x | self.lin | self.relu
[docs]class MultiheadAttention(nn.Module):
[docs] def __init__(self, qdim, kdim, vdim, embed, head=4, outdim=None): """Kinda like :class:`torch.nn.MultiheadAttention`, just simpler, shorter, and clearer. Probably not as fast as the official version, and doesn't have masks and whatnot, but easy to read! Example:: xb = torch.randn(14, 32, 35) # (S, N, ), or sequence size 14, batch size 32, feature size 35 # returns torch.Size([14, 32, 50]) MultiheadAttention(35, 35, 35, 9, 4, 50)(xb).shape Although you can use this right away with no mods, I really encourage you to copy and paste the source code of this and modify it to your needs. :param qdim: Basic query, key and value dimensions :param embed: a little different from :class:`torch.nn.MultiheadAttention`, as this is after splitting into heads :param outdim: if not specified, then equals to ``embed * head``""" super().__init__() self.embed = embed; self.head = head; outdim = outdim or embed*head self.qdim = qdim; self.wq = nn.Linear(qdim, head*embed) self.kdim = kdim; self.wk = nn.Linear(kdim, head*embed) self.vdim = vdim; self.wv = nn.Linear(vdim, head*embed) self.outLin = nn.Linear(head*embed, outdim) self.softmax = nn.Softmax(-1)
[docs] def forward(self, query, key=None, value=None): """If ``key`` or ``value`` is not specified, just default to ``query``.""" if key is None: key = query if value is None: value = query S, N, *_ = key.shape; F = self.embed; head = self.head q = self.wq(query); k = self.wk(key); v = self.wv(value) S1 = q.shape[0] if q.shape[1] != k.shape[1]: q = q.expand(-1, k.shape[1], -1).contiguous() q = q.view(S1, -1, F).transpose(0, 1) k = k.view(S, -1, F).transpose(0, 1) v = v.view(S, -1, F).transpose(0, 1) mat = self.softmax((q / math.sqrt(F)) @ k.transpose(1, 2)) return self.outLin((mat @ v).transpose(0, 1).reshape(S1, N, head*F))