# AUTOGENERATED FILE! PLEASE DON'T EDIT
import k1lib, torch; from k1lib.cli import isValue, shape
from .callbacks import Callback, Callbacks, Cbs
from typing import Tuple, List
__all__ = ["Recorder"]
[docs]@k1lib.patch(Cbs)
class Recorder(Callback):
    """Records xb, yb and y from a short run. No training involved.
Example::
    l = k1lib.Learner.sample()
    l.cbs.withRecorder()
    xbs, ybs, ys = l.Recorder.record(1, 2)
    xbs # list of x batches passed in
    ybs # list of y batches passed in, "the correct label"
    ys #  list of network's output
If you have extra metadata in your dataloader, then the recorder will return
(xb, yb, metab, ys) instead::
    # creating a new dataloader that yields (xb, yb, metadata)
    x = torch.linspace(-5, 5, 1000); meta = torch.tensor(range(1000))
    dl = [x, x+2, meta] | transpose() | randomize(None) | repeatFrom() | batched()\
    | (transpose() | (toTensor() + toTensor() + toTensor())).all() | stagger(50)
    
    l = k1lib.Learner.sample(); l.data = [dl, []]
    l.cbs.withRecorder()
    xbs, ybs, metabs, ys = l.Recorder.record(1, 2)
"""
    def __init__(self):
        super().__init__(); self.order = 20; self.suspended = True
    def startRun(self):
        self.xbs = []; self.ybs = []; self.metabs = []; self.ys = []
    def startBatch(self):
        self.xbs.append(self.l.xb.detach())
        self.ybs.append(self.l.yb.detach())
        self.metabs.append(self.l.metab)
    def endPass(self):
        self.ys.append(self.l.y.detach())
    @property
    def values(self):
        hasMeta = self.metabs | ~isValue([]) | shape(0) > 0
        if hasMeta: return self.xbs, self.ybs, self.metabs, self.ys
        else: return self.xbs, self.ybs, self.ys
[docs]    def record(self, epochs:int=1, batches:int=None) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[torch.Tensor]]:
        """Returns recorded xBatch, yBatch and answer y"""
        self.suspended = False
        try:
            with self.cbs.context(), self.cbs.suspendEval():
                self.cbs.withDontTrain().withTimeLimit(5)
                self.l.run(epochs, batches)
        finally: self.suspended = True
        return self.values 
    def __repr__(self):
        return f"""{self._reprHead}, can...
- r.record(epoch[, batches]): runs for a while, and records x and y batches, and the output
{self._reprCan}""" 
@k1lib.patch(Callbacks, docs=Recorder)
def withRecorder(self): return self.append(Recorder())