k1lib.kdata module¶
Everything related to data transformation and loading. This is exposed automatically with:
from k1lib.imports import *
kdata.FunctionData # exposed
- 
class k1lib.kdata.FunctionData[source]¶
- Bases: - object
- 
k1lib.kdata.tfImg(size: Optional[int] = None, /, flip=True) → k1lib.cli.init.BaseCli[source]¶
- Get typical image transforms. Example: - "path/img.png" | toPIL() | kdata.imgTf(224) 
- 
k1lib.kdata.tfFloat(t: Union[Iterator[float], torch.Tensor], force=True) → k1lib.cli.init.BaseCli[source]¶
- Suggested float input transformation function. Example: - # before training data = torch.randn(10, 20) * 100 + 20 # weird data with weird hist distribution f = kdata.tfFloat(data) # while training newData = torch.randn(10, 20) * 105 + 15 newData | f # nicely formatted Tensor, going uniformly from -1 to 1 - Parameters
- force – if True, forces weird values to 0.0, else filters out all weird rows.