# AUTOGENERATED FILE! PLEASE DON'T EDIT
import torch, math, logging
import torch.nn as nn, numpy as np
from typing import Dict, Any, List, Union, Callable, overload, Tuple, Iterator\
, ContextManager
__all__ = ["_docsUrl", "Object", "Range", "Domain",
           "CancelRunException", "CancelEpochException", "CancelBatchException",
           "textToHtml", "clearLine", "tab", "isNumeric", "close", "stats",
           "patch", "squeeze", "raiseEx", "smooth", "numDigits", "limitLines",
           "limitChars", "showLog", "cleanDiv", "beep", "executeNb", "dontWrap",
           "Func", "polyfit", "derivative", "optimize", "inverse", "integrate"]
_docsUrl = "https://k1lib.github.io"
[docs]class Object:
    """Convenience class that acts like ``defaultdict``. You can use
it like a normal object::
    a = Object()
    a.b = 3
    print(a.b) # outputs "3"
``__repr__()`` output is pretty nice too:
.. code-block:: text
    <class '__main__.Object'>, with attrs:
    - b
You can instantiate it from a dict::
    a = Object.fromDict({"b": 3, "c": 4})
    print(a.c) # outputs "4"
And you can specify a default value, just like defaultdict::
    a = Object().withAutoDeclare(lambda: [])
    a.texts.extend(["factorio", "world of warcraft"])
    print(a.texts[0]) # outputs "factorio"
    
.. warning::
    Default values only work with variables that don't start with an
    underscore "_".
Treating it like defaultdict is okay too::
    a = Object().withAutoDeclare(lambda: [])
    a["movies"].append("dune")
    print(a.movies[0]) # outputs "dune"
"""
    def __init__(self): self._defaultValueGenerator = None; self.repr = None
[docs]    @staticmethod
    def fromDict(_dict:Dict[str, Any]):
        """Creates an object with attributes from a dictionary"""
        answer = Object(); answer.__dict__.update(_dict); return answer 
    @property
    def state(self) -> dict:
        """Essentially ``__dict__``, but only outputs the fields you
defined. If your framework intentionally set some attributes, those
will be reported too, so beware"""
        answer = dict(self.__dict__); del answer["_defaultValueGenerator"]
        del answer["repr"]; answer.pop("getdoc", None); return answer
[docs]    def withAutoDeclare(self, defaultValueGenerator):
        """Sets this Object up so that if a field doesn't
        exist, it will automatically create it with a
        default value."""
        self._defaultValueGenerator = defaultValueGenerator; return self 
    def __getitem__(self, idx): return getattr(self, idx)
    def __setitem__(self, idx, value): setattr(self, idx, value)
    def __contains__(self, item:str): return item in self.__dict__
    def __getattr__(self, attr):
        if attr.startswith("_"): raise AttributeError()
        if self._defaultValueGenerator != None:
            self.__dict__[attr] = self._defaultValueGenerator()
            return self.__dict__[attr]
        raise AttributeError
[docs]    def withRepr(self, _repr:str):
        """Specify output of ``__repr__()``. Legacy code. You can just
monkey patch it instead."""
        self.repr = _repr; return self 
    def __repr__(self):
        _dict = "\n".join([f"- {k}" for k in self.state.keys()])
        return self.repr or f"{type(self)}, with attrs:\n{_dict}" 
[docs]class CancelRunException(Exception):
    """Used in core training loop, to skip the run entirely"""
    pass 
[docs]class CancelEpochException(Exception):
    """Used in core training loop, to skip to next epoch"""
    pass 
[docs]class CancelBatchException(Exception):
    """Used in core training loop, to skip to next batch"""
    pass 
[docs]def textToHtml(text:str) -> str:
    """Transform a string so that it looks the same on browsers
as in `print()`"""
    return text.replace("\n", "<br>").replace(" ", " ") 
[docs]def clearLine():
    """Prints a character that clears the current line"""
    print("\r" + " "*80 + "\r", end="") 
[docs]def tab(text:Union[list, str]) -> Union[list, str]:
    """Adds a tab before each line. str in, str out. List in, list out"""
    if isinstance(text, str):
        return "\n".join(["    " + line for line in text.split("\n")])
    else: return ["    " + line for line in text] 
[docs]def isNumeric(x) -> bool:
    """Returns whether object is actually a number"""
    return isinstance(x, (int, float, np.float, np.int)) 
[docs]def close(a, b):
    """Returns whether 2 values are really close to each other"""
    if isNumeric(a) and isNumeric(b): return abs(a - b) < 1e-6
    return torch.allclose(torch.tensor(a), torch.tensor(b)) 
[docs]def stats(x) -> Tuple[float, float]:
    """Returns the mean and standard deviation of the input"""
    return x.mean(), x.std() 
[docs]def patch(_class:type, name:str=None, docs:Union[str, Any]=None, static=False):
    """Patches a function to a class/object.
:param _class: object to patch function. Can also be a type
:param name: name of patched function, if different from current
:param docs: docs of patched function. Can be object with __doc__ attr
:param static: whether to wrap this inside :class:`staticmethod` or not
Intended to be used like this::
    class A:
        def methA(self):
            return "inside methA"
    @patch(A)
    def methB(self):
        return "inside methB"
        
    a = A()
    print(a.methB()) # will print "inside methB"
"""
    def inner(function):
        _docs = docs
        if _docs is not None and not isinstance(_docs, str): _docs = _docs.__doc__
        _docs = _docs or function.__doc__ or _class.__doc__
        _name = name or function.__qualname__.split(".")[-1]
        
        _function = staticmethod(function) if static else function
        _function.__doc__ = _docs; setattr(_class, _name, _function); return _function
    return inner 
[docs]def squeeze(_list:Union[list, tuple, torch.Tensor, Any], hard=False):
    """If list only has 1 element, rethrn that element, else return original list
:param hard: If True, then if list/tuple, filters out None, and takes the first
    element out even if that list/tuple has more than 1 element"""
    if isinstance(_list, (tuple, list)):
        if hard: return [e for e in _list if e != None and e != ""][0]
        elif len(_list) == 1: return _list[0]
    if isinstance(_list, torch.Tensor): return _list.squeeze()
    return _list 
[docs]def raiseEx(ex:Exception):
    """Raises a specific exception. May be useful in lambdas"""
    raise ex 
[docs]def smooth(arr:List[float], consecutives:int=5) -> List[float]:
    """Smoothes out array, so that y values are averages of the neighbors"""
    answer = []; s = 0
    for i, elem in enumerate(arr):
        s += elem
        if (i + 1) % consecutives == 0:
            answer.append(s / consecutives); s = 0
    return answer 
[docs]def numDigits(num) -> int:
    """Get the number of digits/characters of this number/object"""
    return len(f"{num}") 
[docs]def limitLines(s:str, limit:int=10) -> str:
    """If input string is too long, truncates it and adds ellipsis"""
    if len(splits := s.split("\n")) > limit:
        return "\n".join(splits[:limit]) + "\n....."
    else: return s 
[docs]def limitChars(s:str, limit:int=50):
    """If input string is too long, truncates to first `limit` characters of the first line"""
    if s is None: return ""
    s = f"{s}".split("\n")[0]
    return s[:limit] + "..." if len(s) > limit-3 else s 
[docs]def showLog(loggerName:str="", level:int=logging.DEBUG):
    """Prints out logs of a particular logger at a particular level"""
    logger = logging.getLogger(loggerName); logger.setLevel(level)
    sh = logging.StreamHandler(); sh.setLevel(logging.DEBUG); logger.addHandler(sh) 
def cleanDiv(_list:List[float], total:int) -> List[int]:
    """Cleanly divides :total: into int segments with weights specified by
:_list:. Looks like this: ``(_list / _list.sum()) * total``, but
everything is an ``int``"""
    _list = np.array(_list)
    _list = (_list*total/_list.sum()).astype(int)
    _list[-1] = total - _list[:-1].sum()
    return _list
ninf = float("-inf"); inf = float("inf")
[docs]class Range:
    """A range of numbers. It's just 2 numbers really: start and stop
This is essentially a convenience class to provide a nice, clean
abstraction and to eliminate errors. You can transform values::
    Range(10, 20).toUnit(13) # returns 0.3
    Range(10, 20).fromUnit(0.3) # returns 13
    Range(10, 20).toRange(Range(20, 10), 13) # returns 17
You can also do random math operations on it::
    (Range(10, 20) * 2 + 3) == Range(23, 43) # returns True
    Range(10, 20) == ~Range(20, 10) # returns True"""
[docs]    def __init__(self, start=0, stop=None):
        """Creates a new Range.
There are different ``__init__`` functions for many situations:
- Range(2, 11.1): create range [2, 11.1]
- Range(15.2): creates range [0, 15.2]
- Range(Range(2, 3)): create range [2, 3]. This serves as sort of a catch-all
- Range(slice(2, 5, 2)): creates range [2, 5]. Can also be a :class:`range`
- Range(slice(2, -1), 10): creates range [2, 9]
- Range([1, 2, 7, 5]): creates range [1, 5]. Can also be a tuple
"""
        if (isNumeric(start) and isNumeric(stop)):
            self.start, self.stop = start, stop
        elif isNumeric(start) and stop == None:
            self.start, self.stop = 0, start
        elif stop == None and isinstance(start, (range, slice, Range)):
            self.start, self.stop = start.start, start.stop
        elif isNumeric(stop) and isinstance(start, slice):
            r = range(stop)[start]; self.start, self.stop = r.start, r.stop
        elif isinstance(start, (list, tuple)):
            self.start, self.stop = start[0], start[-1]
        else: raise AttributeError(f"Don't understand {start} and {stop}")
        self.delta = self.stop - self.start 
[docs]    def __getitem__(self, index):
        """0 for start, 1 for stop
You can also pass in a :class:`slice` object, in which case, a range subset
will be returned. Code kinda looks like this::
    range(start, stop)[index]
"""
        if index == 0: return self.start
        if index == 1: return self.stop
        if type(index) == slice:
            return Range(range(self.start, self.stop)[index])
        raise Exception(f"Can't get index {index} of range [{self.start}, {self.stop}]") 
[docs]    def fixOrder(self) -> "Range":
        """If start greater than stop, switch the 2, else do nothing"""
        if self.start > self.stop:
            self.start, self.stop = self.stop, self.start
        return self 
    def _common(self, x, f:Callable[[float], float]):
        if isNumeric(x): return f(x)
        if isinstance(x, (list, tuple)):
            return [self._common(elem, f) for elem in x]
        if isinstance(x, (range, slice, Range)):
            return Range(self._common(x.start if x.start != None else 0, f), self._common(x.stop if x.stop != None else 1, f))
        raise AttributeError(f"Doesn't understand {x}")
    def __iter__(self): yield self.start; yield self.stop
[docs]    def intIter(self, step:int=1) -> Iterator[int]:
        """Returns integers within this Range"""
        return range(int(self.start), int(self.stop), step) 
[docs]    def toUnit(self, x):
        """Converts x from current range to [0, 1] range. Example::
    r = Range(2, 10)
    r.toUnit(5) # will return 0.375, as that is (5-2)/(10-2)
You can actually pass in a lot in place of x::
    r = Range(0, 10)
    r.toUnit([5, 3, 6]) # will be [0.5, 0.3, 0.6]. Can also be a tuple
    r.toUnit(slice(5, 6)) # will be slice(0.5, 0.6). Can also be a range, or Range
.. note::
    In the last case, if ``start`` is None, it gets defaulted to 0, and
    if ``end`` is None, it gets defaulted to 1
"""
        def f(x):
            if self.delta == 0: return float("nan")
            return (x - self.start) / self.delta
        return self._common(x, lambda x: float("nan") if self.delta == 0 else (x - self.start) / self.delta) 
[docs]    def fromUnit(self, x):
        """Converts x from [0, 1] range to this range. Example::
    r = Range(0, 10)
    r.fromUnit(0.3) # will return 3
x can be a lot of things, see :meth:`toUnit` for more"""
        return self._common(x, lambda x: x * self.delta + self.start) 
[docs]    def toRange(self, _range:"Range", x):
        """Converts x from current range to another range. Example::
    r = Range(0, 10)
    r.toRange(Range(0, 100), 6) # will return 60
x can be a lot of things, see :meth:`toUnit` for more."""
        return self._common(x, lambda x: Range(_range).fromUnit(self.toUnit(x))) 
    @property
    def range_(self):
        """Returns a :class:`range` object with start and stop values
rounded off"""
        return range(math.floor(self.start+0.001), math.floor(self.stop+0.001))
    @property
    def slice_(self):
        """Returns a :class:`slice` object with start and stop values
rounded off"""
        return slice(math.floor(self.start+0.001), math.floor(self.stop+0.001))
[docs]    @staticmethod
    def proportionalSlice(r1, r2, r1Slice:slice) -> Tuple["Range", "Range"]:
        """Slices r1 and r2 proportionally. Best to explain using an
example. Let's say you have 2 arrays created from a time-dependent
procedure like this::
    a = []; b = []
    for t in range(100):
        if t % 3 == 0: a.append(t)
        if t % 5 == 0: b.append(1 - t)
    len(a), len(b) # returns (34, 20)
a and b are of different lengths, but you want to plot both from 30%
mark to 50% mark (for a, it's elements 10 -> 17, for b it's 6 -> 10),
as they are time-dependent. As you can probably tell, to get the indicies
10, 17, 6, 10 is messy. So, you can do something like this instead::
    r1, r2 = Range.proportionalSlice(Range(len(a)), Range(len(b)), slice(10, 17))
This will return the Ranges [10, 17] and [5.88, 10]
Then, you can plot both of them side by side like this::
    fig, axes = plt.subplots(ncols=2)
    axes[0].plot(r1.range_, a[r1.slice_])
    axes[1].plot(r2.range_, a[r2.slice_])
"""
        r1, r2 = Range(r1), Range(r2)
        ar2 = r1.toRange(r2, (ar1 := r1[r1Slice]))
        return ar1, ar2 
[docs]    def bound(self, rs:Union[range, slice]) -> Union[range, slice]:
        """If input range|slice's stop and start is missing, then use this
range's start and stop instead."""
        start = rs.start or self.start
        stop = rs.stop or self.stop
        return type(rs)(start, stop) 
[docs]    def copy(self): return Range(self.start, self.stop) 
    def __str__(self): return f"[{self.start}, {self.stop}]"
    def __eq__(self, _range):
        _range = Range(_range)
        return (_range.start == self.start or abs(_range.start - self.start) < 1e-9) and\
            
(_range.stop == self.stop or abs(_range.stop - self.stop) < 1e-9)
    def __contains__(self, x:float): return x >= self.start and x < self.stop
    def __neg__(self): return Range(-self.start, -self.stop)
[docs]    def __invert__(self): return Range(self.stop, self.start) 
    def __add__(self, num): return Range(self.start + num, self.stop + num)
    def __radd__(self, num): return self + num
    def __mul__(self, num): return Range(self.start * num, self.stop * num)
    def __rmul__(self, num): return self * num
    def __truediv__(self, num): return num * (1/num)
    def __rtruediv__(self, num): raise "Doesn't make sense to do this!"
    def __round__(self): return Range(round(self.start), round(self.stop))
    def __ceil__(self): return Range(math.ceil(self.start), math.ceil(self.stop))
    def __floor__(self): return Range(math.floor(self.start), math.floor(self.stop))
    def __repr__(self):
        return f"""A range of numbers: [{self.start}, {self.stop}]. Can do:
- r.toUnit(x): will convert x from range [{self.start}, {self.stop}] to [0, 1]
- r.fromUnit(x): will convert x from range [0, 1] to range [{self.start}, {self.stop}]
- r.toRange([a, b], x): will convert x from range [{self.start}, {self.stop}] to range [a, b]
- r[0], r[1], r.start, r.stop: get start and stop values of range
Note: for conversion methods, you can pass in""" 
def yieldLowest(r1s:Iterator[Range], r2s:Iterator[Range]):
    """Given 2 :class:`Range` generators with lengths a and b, yield every
object (a + b) so that :class:`Range`s with smaller start point gets yielded
first. Assumes that each generator:
- Does not intersect with itself
- Is sorted by start point already
.. warning::
    This method will sometimes yield the same objects given by the Iterators.
    Make sure you copy each :class:`Range` if your use case requires"""
    r1s = iter(r1s); r2s = iter(r2s)
    if (r1 := next(r1s, None)) is None: yield from r2s; return
    if (r2 := next(r2s, None)) is None: yield r1; yield from r1s; return
    while True:
        while r1.start <= r2.start:
            yield r1
            r1 = next(r1s, None)
            if r1 is None: yield r2; yield from r2s; return
        while r2.start <= r1.start:
            yield r2
            r2 = next(r2s, None)
            if r2 is None: yield r1; yield from r1s; return
def join(r1s:Iterator[Range], r2s:Iterator[Range]):
    """Joins 2 :class:`Range` generators, so that overlaps gets merged
together.
.. warning::
    This method will sometimes yield the same objects given by the Iterators.
    Make sure you copy each :class:`Range` if your use case requires"""
    it = yieldLowest(r1s, r2s)
    if (r := next(it, None)) is None: return
    while True:
        nr = next(it, None)
        if nr is None: yield r; return
        if r.stop >= nr.start:
            r = r.copy(); r.stop = max(r.stop, nr.stop)
        else: yield r; r = nr
def neg(rs:List[Range]):
    """Returns R - rs, where R is the set of real numbers."""
    rs = iter(rs)
    if (r := next(rs, None)) is None: yield Range(ninf, inf); return
    if ninf < r.start: yield Range(ninf, r.start) # check -inf case
    while True:
        start = r.stop
        if (r := next(rs, None)) is None:
            if start < inf: yield Range(start, inf)
            return
        yield Range(start, r.start)
[docs]class Domain:
[docs]    def __init__(self, *ranges, dontCheck:bool=False):
        """Creates a new domain.
:param ranges: each element is a :class:`Range`, although any format will be fine as this selects for that
:param dontCheck: don't sanitize inputs, intended to boost perf internally only
A domain is just an array of :class:`Range` that represents what intervals on
the real number line is chosen. Some examples::
    inf = float("inf") # shorthand for infinity
    Domain([5, 7.5], [2, 3]) # represents "[2, 3) U [5, 7.5)"
    Domain([2, 3.2], [3, 8]) # represents "[2, 8)" as overlaps are merged
    -Domain([2, 3]) # represents "(-inf, 2) U [3, inf)", so essentially R - d, with R being the set of real numbers
    -Domain([-inf, 3]) # represents "[3, inf)"
    Domain.fromInts(2, 3, 6) # represents "[2, 4) U [6, 7)"
You can also do arithmetic on them, and check "in" oeprator::
    Domain([2, 3]) + Domain([4, 5]) # represents "[2, 3) U [4, 5)"
    Domain([2, 3]) + Domain([2.9, 5]) # represents "[2, 5)", also merges overlaps
    3 in Domain([2, 3]) # returns False
    2 in Domain([2, 3]) # returns True"""
        if dontCheck: self.ranges = list(ranges); return
        # convert all to Range type, fix its order, and sort based on .start
        ranges = [(r if isinstance(r, Range) else Range(r)).fixOrder() for r in ranges]
        ranges = sorted(ranges, key=lambda r: r.start)
        # merges overlapping segments
        self.ranges = list(join(ranges, [])) 
[docs]    @staticmethod
    def fromInts(*ints:List[int]):
        """Returns a new :class:`Domain` which has ranges [i, i+1] for each
int given."""
        return Domain(*(Range(i, i+1) for i in ints)) 
[docs]    def copy(self): return Domain(*(r.copy() for r in self.ranges)) 
[docs]    def intIter(self, step:int=1, start:int=0):
        """Yields ints in all ranges of this domain. If first range's domain
is :math:`(-\inf, a)`, then starts at the specified integer"""
        if len(self.ranges) == 0: return
        for r in self.ranges:
            x = int(start) if r.start == -inf else int(r.start)
            while x < r.stop: yield x; x += step 
    def __neg__(self): return Domain(*neg(self.ranges), dontCheck=True)
    def __add__(self, domain): return Domain(*(r.copy() for r in join(self.ranges, domain.ranges)), dontCheck=True)
    def __sub__(self, domain): return self + (-domain)
    def __eq__(self, domain): return self.ranges == domain.ranges
    def __str__(self): return f"Domain: {', '.join(r for r in self.ranges)}"
    def __contains__(self, x): return any(x in r for r in self.ranges)
    def __repr__(self):
        rs = '\n'.join(f"- {r}" for r in self.ranges)
        return f"""Domain:\n{rs}\n\nCan:
- 3 in d: check whether a number is in this domain or not
- d1 + d2: joins 2 domain
- -d: excludes the domain from R
- d1 - d2: same as d1 + (-d2)""" 
Func = Callable[[float], float]
[docs]def polyfit(x:List[float], y:List[float], deg:int=6) -> Func:
    """Returns a function that approximate :math:`f(x) = y`.
:param deg: degree of the polynomial of the returned function
"""
    params = np.polyfit(x, y, deg)
    def _inner(_x):
        answer = np.zeros_like(_x, dtype=np.float)
        for expo, param in enumerate(params):
            answer += param * _x**(len(params)-expo-1)
        return answer
    return _inner 
[docs]def derivative(f:Func, delta:float=1e-6) -> Func:
    """Returns the derivative of a function"""
    return lambda x: (f(x + delta) - f(x)) / delta 
[docs]def optimize(f:Func, v:float=1, threshold:float=1e-6) -> float:
    """Given :math:`f(x) = 0`, solves for x, using initial value `v`"""
    fD = derivative(f)
    while abs(f(v)) > threshold: v = v - f(v)/fD(v)
    return v 
[docs]def inverse(f:Func) -> Func:
    """Returns the inverse of a function. The inverse function takes
a long time to run, so don't use this where you need lots
of speed."""
    return lambda y: optimize(lambda x: f(x) - y) 
[docs]def integrate(f:Func, _range:Range) -> float:
    """Integrates a function over a range"""
    n = 1000; xs = np.linspace(*_range, n)
    return sum([f(x)*_range.delta/n for x in xs]) 
@patch(nn.Module, name="importParams")
def _importParams(self:nn.Module, params:List[nn.Parameter]):
    """Given a list of :class:`torch.nn.parameter.Parameter`/:class:`torch.Tensor`,
update the current :class:`torch.nn.Module`'s parameters with it'"""
    for oldParam, newParam in zip(self.parameters(), params):
        oldParam.data = newParam.data.clone()
@patch(nn.Module, name="exportParams")
def _exportParams(self:nn.Module) -> List[torch.Tensor]:
    """Gets the list of :class:`torch.nn.parameter.Parameter` data"""
    return [param.data.clone() for param in self.parameters()]
@patch(nn.Module, name="getParamsVector")
def _getParamsVector(model:nn.Module) -> List[torch.Tensor]:
    """For each parameter, returns a normal distributed random tensor
with the same standard deviation as the original parameter"""
    answer = []
    for param in model.parameters():
        a = torch.randn(param.shape).to(param.device)
        b = param.std() if param.numel() > 1 else 1
        answer.append(a * b)
    return answer
class _NnModuleDeviceContext:
    def __init__(self, nnModule):
        self.nnModule = nnModule
    def __enter__(self):
        self.devices = [p.device for p in self.nnModule.parameters()]
    def __exit__(self, *ignored):
        for p, device in zip(self.nnModule.parameters(), self.devices):
            p.data = p.to(device=device)
@patch(nn.Module, name="preserveDevice")
def _preserveDevice(self:nn.Module) -> ContextManager:
    """Preserves the device of whatever operation is inside this. Example::
    import torch.nn as nn
    m = nn.Linear(3, 4)
    with m.preserveDevice():
        m.cuda() # moves whole model to cuda
    # automatically moves model to cpu
This will work even if the model has many tensors that live on 10 different devices."""
    return _NnModuleDeviceContext(self)
[docs]def beep():
    """Plays a beeping sound, may be useful as notification for long-running tasks"""
    try: import IPython; IPython.core.display.display_html(IPython.display.HTML("""<script>(new Audio('data:audio/wav;base64,UklGRl9vT19XQVZFZm10IBAAAAABAAEAQB8AAEAfAAABAAgAZGF0YU'+Array(1e3).join(123))).play();</script>"""));
    except: import os; os.system("printf '\a'") 
[docs]def executeNb(fileName:str, _globals:dict={}):
    """Executes a specified IPython notebook. Can make all variables
defined in the notebook appear in the __main__ context by
passing `globals()` in"""
    import json
    try: exec("\n".join([line.rstrip() for cell in json.loads(open(fileName).read())["cells"] for line in cell["source"] if cell["cell_type"] == "code"]), _globals)
    except Exception as e: print(f"Msg {e.msg}, line {e.lineno}:\n\n{e.text}") 
[docs]def dontWrap():
    """Don't wrap horizontally when in a notebook"""
    try:
        from IPython.core.display import display, HTML
        display(HTML("<style>div.jp-OutputArea-output pre {white-space: pre;}</style>"))
        display(HTML("<style>div.output_area pre {white-space: pre;}</style>"))
    except: print("Can't run dontWrap()")