k1lib.data module¶
-
class
k1lib.data.
DataLoader
(dataset, batchSize: int = 32, transform: Callable = None, random=True)[source]¶ Bases:
object
-
__init__
(dataset, batchSize: int = 32, transform: Callable = None, random=True)[source]¶ Creates a random sampler.
Basically, when given a dataset with length n and batch size, this will split things up into n/batchSize batches. Then, when indexed by an integer, this will return a range of the dataset.
- Parameters
dataset – any object that implements __getitem__() and __len__() batchSize: integer
Deprecated since version 0.1.3.
-
-
class
k1lib.data.
Data
(train: k1lib.data.DataLoader, valid: k1lib.data.DataLoader)[source]¶ Bases:
object
-
__init__
(train: k1lib.data.DataLoader, valid: k1lib.data.DataLoader)[source]¶ Just a shell of both these variables really. Also, you can use PyTorch’s
torch.utils.data.DataLoader
here just fine
-
-
class
k1lib.data.
FunctionDataset
(function: callable, _range=[- 5, 5], samples: int = 300)[source]¶ Bases:
Generic
[torch.utils.data.dataset.T_co
]A dataset tailored for 1->1 functions. Have several prebuilt datasets: - .exp: e^x - .log: ln(x) - .inverse: 1/x - .linear: 2x + 8 - .sin: sin(x)
-
__init__
(function: callable, _range=[- 5, 5], samples: int = 300)[source]¶ Creates a new dataset, with a specific function.
- Parameters
function – first order function, takes in an x variable
_range – range of x
samples – how many x in specified range
-
property
xs
¶
-
property
ys
¶
-
exp
= Simple 1->1 function dataset. Can do: - a.dl(): to get PyTorch's DataLoader object - a.xs: to get a tensor of all x values - a.ys: to get a tensor of all y values - len(a): to get length of dataset - a[i]: to get specific (x, y) element - a[a:b]: to get another FunctionDataset with a new range [a, b] (same density) - next(iter(a)): to iterate over all elements¶
-
inverse
= Simple 1->1 function dataset. Can do: - a.dl(): to get PyTorch's DataLoader object - a.xs: to get a tensor of all x values - a.ys: to get a tensor of all y values - len(a): to get length of dataset - a[i]: to get specific (x, y) element - a[a:b]: to get another FunctionDataset with a new range [a, b] (same density) - next(iter(a)): to iterate over all elements¶
-
linear
= Simple 1->1 function dataset. Can do: - a.dl(): to get PyTorch's DataLoader object - a.xs: to get a tensor of all x values - a.ys: to get a tensor of all y values - len(a): to get length of dataset - a[i]: to get specific (x, y) element - a[a:b]: to get another FunctionDataset with a new range [a, b] (same density) - next(iter(a)): to iterate over all elements¶
-
log
= Simple 1->1 function dataset. Can do: - a.dl(): to get PyTorch's DataLoader object - a.xs: to get a tensor of all x values - a.ys: to get a tensor of all y values - len(a): to get length of dataset - a[i]: to get specific (x, y) element - a[a:b]: to get another FunctionDataset with a new range [a, b] (same density) - next(iter(a)): to iterate over all elements¶
-
sin
= Simple 1->1 function dataset. Can do: - a.dl(): to get PyTorch's DataLoader object - a.xs: to get a tensor of all x values - a.ys: to get a tensor of all y values - len(a): to get length of dataset - a[i]: to get specific (x, y) element - a[a:b]: to get another FunctionDataset with a new range [a, b] (same density) - next(iter(a)): to iterate over all elements¶
-