# AUTOGENERATED FILE! PLEASE DON'T EDIT HERE. EDIT THE SOURCE NOTEBOOKS INSTEAD
"""
Lots of type hint mechanisms to be used by the `LLVM optimizer <llvm.html>`_
"""
import k1lib.cli as cli
import k1lib, itertools, copy, numbers; import numpy as np
from k1lib.cli.init import yieldT
from typing import List
from collections import defaultdict, deque
try: import torch; hasTorch = True
except: hasTorch = False; torch = k1lib.Object().withAutoDeclare(lambda: type("RandomClass", (object, ), {}))
__all__ = ["tBase", "tAny", "tList", "tIter", "tSet", "tCollection", "tExpand",
           "tNpArray", "tTensor",
           "tListIterSet", "tListSet", "tListIter", "tArrayTypes",
           "inferType", "TypeHintException", "tLowest", "tCheck", "tOpt"]
settings = k1lib.settings.cli
settings.add("llvm", k1lib.Settings(), "settings related to LLVM-inspired optimizer `tOpt`. See more at module `k1lib.cli.typehint`")
settings.llvm.add("k1a", True, "utilize the supplementary C-compiled library automatically for optimizations")
[docs]class TypeHintException(Exception): pass                                         # TypeHintException 
def klassName(self):                                                             # klassName
    if isinstance(self, tBase): return self.__class__.__name__                   # klassName
    try: return f"{self.__name__}"                                               # klassName
    except: return f"{self}"                                                     # klassName
def klassRepr(self): return f"{self}" if isinstance(self, tBase) else klassName(self) # klassRepr
[docs]class tBase:                                                                     # tBase
    def __init__(self, child=type(None)): self.child = child                     # tBase
    def __repr__(self):                                                          # tBase
        return f"<{klassName(self)} {klassRepr(self.child)}>"                    # tBase
    def __eq__(self, v):                                                         # tBase
        if not isinstance(v, tBase): return False                                # tBase
        if self.__class__ != v.__class__: return False                           # tBase
        if self.child != v.child: return False                                   # tBase
        return True                                                              # tBase
[docs]    def check(self, v):                                                          # tBase
        """Checks whether a specific object adhears to this type hint or not.
Returns :attr:`yieldT` if object does not adhere. If it does, then return the object.
Note that in the case that the object is actually an iterator, it will return
a new iterator containing all elements from the old iterator."""                 # tBase
        return NotImplemented                                                    # tBase 
[docs]    def item(self):                                                              # tBase
        """Gets the child type of this type. Basically what's the type if
it were to go through :class:`~k1lib.cli.utils.item`. Example::
    # returns tTensor(torch.float32, 2)
    tTensor(torch.float32, 3).item()
"""                                                                              # tBase
        return self.child if self.child is not type(None) else tAny()            # tBase 
[docs]    def expand(self, n) -> List["tBase"]:                                        # tBase
        """Expands the type to a list with ``n`` elements.
Example::
    # returns [int, int, int, int]
    tList(int).expand(4)
    # returns [int, float, float, str]
    tCollection(int, tExpand(float), str).expand(4)
"""                                                                              # tBase
        return [self.child if self.child is not type(None) else tAny()]*n        # tBase 
    def __hash__(self):                                                          # tBase
        return hash(f"{self.__class__} {self.child}")                            # tBase 
def checkF(t):                                                                   # checkF
    #print(t, isinstance(t, (tBase, cli.typehint.tBase)))                        # checkF
    if isinstance(t, (tBase, cli.typehint.tBase)): return t.check                # checkF
    else:                                                                        # checkF
        def inner(x):                                                            # checkF
            try: return x if isinstance(x, t) else yieldT                        # checkF
            except TypeError:                                                    # checkF
                if hasTorch and isinstance(x, torch.Tensor):                     # checkF
                    return x if x.dtype == t else yieldT                         # checkF
                return yieldT                                                    # checkF
            except Exception as e:                                               # checkF
                print(x, t); raise e                                             # checkF
        return inner                                                             # checkF
[docs]class tAny(tBase):                                                               # tAny
    def __init__(self): super().__init__()                                       # tAny
    def __repr__(self): return f"<{klassName(self)}>"                            # tAny
    def __eq__(self, v): return isinstance(v, tAny)                              # tAny
[docs]    def check(self, v): return v                                                 # tAny 
[docs]    def item(self): return tAny()                                                # tAny 
    def __hash__(self): return hash(f"tAny")                                     # tAny 
[docs]class tIter(tBase):                                                              # tIter
[docs]    def check(self, v):                                                          # tIter
        l = []                                                                   # tIter
        for e in v:                                                              # tIter
            x = checkF(self.child)(e); l.append(x)                               # tIter
            if x == yieldT: return yieldT                                        # tIter
        return iter(l)                                                           # tIter  
[docs]class tList(tBase):                                                              # tList
[docs]    def check(self, v):                                                          # tList
        if not isinstance(v, (list, tuple, range)): return yieldT                # tList
        if tIter(self.child).check(v) is yieldT: return yieldT                   # tList
        return v                                                                 # tList  
[docs]class tSet(tBase):                                                               # tSet
[docs]    def check(self, v):                                                          # tSet
        if not isinstance(v, set): return False                                  # tSet
        if tIter(self.child).check(v) is yieldT: return yieldT                   # tSet
        return v                                                                 # tSet  
tListIterSet = (tList, tIter, tSet)                                              # tSet
tListSet = (tList, tSet)                                                         # tSet
tListIter = (tList, tIter)                                                       # tSet
class tDict(tBase):                                                              # tDict
    def __init__(self, keys, values):                                            # tDict
        """Dictionary type.
Example::
    d = tDict(tIter(str), tIter(int))
    # returns {"a": 3} dict, so check passed
    d.check({"a": 3})"""                                                         # tDict
        super().__init__(); self.keys = keys; self.values = values               # tDict
    def check(self, v):                                                          # tDict
        if not isinstance(v, dict): return yieldT                                # tDict
        ks = self.keys.check(list(v.keys()))                                     # tDict
        vs = self.values.check(list(v.values()))                                 # tDict
        if ks is yieldT or vs is yieldT: return yieldT                           # tDict
        return {k: v for k, v in zip(ks, vs)}                                    # tDict
    def __eq__(self, v):                                                         # tDict
        if not isinstance(v, tDict): return False                                # tDict
        if self.keys != v.keys: return False                                     # tDict
        if self.values != v.values: return False                                 # tDict
        return True                                                              # tDict
    def __repr__(self):                                                          # tDict
        return f"<{klassName(self)} {klassRepr(self.keys)} {klassRepr(self.values)}>" # tDict
[docs]class tNpArray(tBase):                                                           # tNpArray
[docs]    def __init__(self, child=None, rank=None):                                   # tNpArray
        """Numpy array type.
Example::
    # returns np.array([2, 3])
    tNpArray(np.int64, 1).check(np.array([2, 3]))
:param child: the dtype of the array
:param rank: the rank/dimension of the array"""                                  # tNpArray
        super().__init__(child); self.rank = rank                                # tNpArray 
[docs]    def check(self, v):                                                          # tNpArray
        if not isinstance(v, np.ndarray): return yieldT                          # tNpArray
        if self.rank is not None and self.rank != len(v.shape): return yieldT    # tNpArray
        return v                                                                 # tNpArray 
    def __repr__(self): return f"<tNpArray {klassName(self.child)} rank={self.rank}>" # tNpArray
[docs]    def item(self): return (tNpArray(self.child, self.rank - 1) if self.rank > 1 else self.child) if self.rank is not None else tNpArray(self.child, None) # tNpArray 
    def __eq__(self, v):                                                         # tNpArray
        if not isinstance(v, tNpArray): return False                             # tNpArray
        if self.child is not None and v.child is not None and self.child != v.child: return False # tNpArray
        if self.rank is None or v.rank is None: return True                      # tNpArray
        return self.rank == v.rank                                               # tNpArray
    def __hash__(self): return hash(f"{self.child} - {self.rank}")               # tNpArray
[docs]    def expand(self, n): return [self.item()]*n                                  # tNpArray  
if hasTorch:                                                                     # tNpArray
    class tTensor(tBase):                                                        # tNpArray
[docs]        def __init__(self, child=None, rank=None):                               # tNpArray
            """PyTorch tensor type.
    Example::
        # returns torch.tensor([2.0, 3.0])
        tTensor(torch.float32, 1).check(torch.tensor([2.0, 3.0]))
    :param child: the dtype of the array
    :param rank: the rank/dimension of the tensor"""                             # tNpArray
            super().__init__(child); self.rank = rank                            # tNpArray 
[docs]        def check(self, v):                                                      # tNpArray
            if not isinstance(v, torch.Tensor): return yieldT                    # tNpArray
            if self.rank is not None and self.rank != len(v.shape): return yieldT # tNpArray
            return v                                                             # tNpArray 
        def __repr__(self): return f"<tTensor {klassName(self.child)} rank={self.rank}>" # tNpArray
[docs]        def item(self): return (tTensor(self.child, self.rank - 1) if self.rank > 1 else self.child) if self.rank is not None else tTensor(self.child, None) # tNpArray 
        def __eq__(self, v):                                                     # tNpArray
            if not isinstance(v, tTensor): return False                          # tNpArray
            if self.child is not None and v.child is not None and self.child != v.child: return False # tNpArray
            if self.rank is None or v.rank is None: return True                  # tNpArray
            return self.rank == v.rank                                           # tNpArray
        def __hash__(self): return hash(f"{self.child} - {self.rank}")           # tNpArray
[docs]        def expand(self, n): return [self.item()]*n                              # tNpArray 
    tArrayTypes = (tNpArray, tTensor)                                            # tNpArray
else:                                                                            # tNpArray
[docs]    class tTensor(tBase): pass                                                   # tNpArray 
    tArrayTypes = (tNpArray,)                                                    # tNpArray
[docs]class tCollection(tBase):                                                        # tCollection
[docs]    def __init__(self, *children):                                               # tCollection
        """Fixed-length collection of things. Let's say you want a tuple with
5 values::
    a = [3, [2, 3], "e", 2.0, b'3']
Then, this would be represented like this::
    tCollection(int, tList(int), str, float, bytes)
This also works in conjunction with :class:`tExpand`, like this::
    a = [3, [2, 3], "e", 2.0, 3.0]
    tCollection(int, tList(int), str, tExpand(float))"""                         # tCollection
        super().__init__(None); self.children = list(children)                   # tCollection
        nExpands = sum(isinstance(e, tExpand) for e in children)                 # tCollection
        if nExpands > 1: raise TypeHintException("Can't have 2 `tExpand` in a `tCollection`") # tCollection
        self.nChildren = len(children) - nExpands # minimum number of children possible # tCollection
        self.expandIdx = -1                                                      # tCollection
        for i, e in enumerate(children):                                         # tCollection
            if isinstance(e, tExpand): self.expandIdx = i                        # tCollection 
    def __repr__(self):                                                          # tCollection
        a = ' '.join(klassRepr(c) for c in self.children)                        # tCollection
        return f"<{klassName(self)} {a}>"                                        # tCollection
    def __eq__(self, v):                                                         # tCollection
        if isinstance(v, tCollection):                                           # tCollection
            if len(self.children) != len(v.children): return False               # tCollection
            for x, y in zip(self.children, v.children):                          # tCollection
                if x != y: return False                                          # tCollection
            return True                                                          # tCollection
        return False                                                             # tCollection
[docs]    def check(self, v):                                                          # tCollection
        t = type(v) if isinstance(v, (list, tuple)) else None                    # tCollection
        v = list(v); l = []                                                      # tCollection
        if self.expandIdx >= 0:                                                  # tCollection
            n = len(self.children); nv = len(v)                                  # tCollection
            nMatchExpand = nv-(n-1)                                              # tCollection
            for i in range(self.expandIdx):                                      # tCollection
                x = checkF(self.children[i])(v[i]); l.append(x)                  # tCollection
                if x is yieldT: return yieldT                                    # tCollection
            for i in range(self.expandIdx, self.expandIdx + nMatchExpand):       # tCollection
                x = checkF(self.children[self.expandIdx])(v[i]); l.append(x)     # tCollection
                if x is yieldT: return yieldT                                    # tCollection
            for i in range(self.expandIdx + nMatchExpand, nv):                   # tCollection
                x = checkF(self.children[i-nMatchExpand+1])(v[i]); l.append(x)   # tCollection
                if x is yieldT: return yieldT                                    # tCollection
        else:                                                                    # tCollection
            l = []                                                               # tCollection
            for c, e in zip(self.children, v):                                   # tCollection
                x = checkF(c)(e); l.append(x)                                    # tCollection
                if x is yieldT: return yieldT                                    # tCollection
        return t(l) if t else l                                                  # tCollection 
[docs]    def reduce(self):                                                            # tCollection
        """Tries to reduce ``tCollection(int, int)`` to ``tIter(int)`` if possible""" # tCollection
        s = self.children[0]                                                     # tCollection
        for e in self.children:                                                  # tCollection
            if s != e: return self                                               # tCollection
        return tIter(s)                                                          # tCollection 
[docs]    def item(self): return tLowest(*((t.child if isinstance(e, tExpand) else t) for t in self.children)) # tCollection 
[docs]    def expand(self, n:int) -> List[tBase]:                                      # tCollection
        """Expands out this collection so that it has a specified length"""      # tCollection
        if self.expandIdx >= 0:                                                  # tCollection
            ts = []                                                              # tCollection
            for t in self.children:                                              # tCollection
                if isinstance(t, tExpand):                                       # tCollection
                    for i in range(n - len(self.children) + 1): ts.append(t.child) # tCollection
                else: ts.append(t)                                               # tCollection
            return ts                                                            # tCollection
        else:                                                                    # tCollection
            if len(self.children) == n: return list(self.children)               # tCollection
            else: # doesn't make sense, so default case should return to list of lowest child # tCollection
                return [self.item()]*n                                           # tCollection  
[docs]class tExpand(tBase):                                                            # tExpand
[docs]    def __init__(self, child):                                                   # tExpand
        """Supplement to :class:`tCollection`"""                                 # tExpand
        super().__init__(child)                                                  # tExpand 
[docs]    def check(self, v): return checkF(self.child)(v)                             # tExpand  
settings.atomic.add("typeHint", (numbers.Number, np.number, str, bool, bytes), "atomic types used for infering type of object for optimization passes") # tExpand
[docs]def inferType(o):                                                                # inferType
    """Tries to infer the type of the input.
Example::
    # returns tList(int)
    inferType(range(10))
    # returns tTensor(torch.float32, 2)
    inferType(torch.randn(2, 3))
"""                                                                              # inferType
    if isinstance(o, range): return tList(int)                                   # inferType
    if isinstance(o, settings.atomic.typeHint): return type(o)                   # inferType
    if isinstance(o, np.ndarray): return tNpArray(o.dtype, len(o.shape))         # inferType
    if hasTorch and isinstance(o, torch.Tensor): return tTensor(o.dtype, len(o.shape)) # inferType
    if isinstance(o, (list, tuple)):                                             # inferType
        arr = []; diff = False; a = None                                         # inferType
        for e in o:                                                              # inferType
            t = inferType(e); arr.append(t)                                      # inferType
            if a is None: a = t                                                  # inferType
            if a != t: diff = True                                               # inferType
        if diff:                                                                 # inferType
            if len(arr) < 100: return tCollection(*arr)                          # inferType
            else: return tList(tLowest(*arr))                                    # inferType
        else: return tList(a)                                                    # inferType
    if isinstance(o, dict): return tDict(inferType(list(o.keys())), inferType(list(o.values()))) # inferType
    return tAny()                                                                # inferType 
def lowestChild(t):                                                              # lowestChild
    if isinstance(t, tCollection): return tLowest(*t.children)                   # lowestChild
    if isinstance(t, tListIterSet): return t.child                               # lowestChild
    if isinstance(t, tArrayTypes):                                               # lowestChild
        if t.rank is None or t.rank == 1: return t.child                         # lowestChild
        if t.rank is None: return t.__class__(t.child)                           # lowestChild
        else: return t.__class__(t.child, t.rank - 1)                            # lowestChild
    raise TypeHintException(f"Type {t} does not have a lowest child")            # lowestChild
intTypes = {int, np.int8, np.int16, np.int32, np.int64, torch.int8, torch.int16, torch.int32, torch.int64} # lowestChild
floatTypes = {float, np.float16, np.float32, np.float64, torch.float16, torch.float32, torch.float64, torch.bfloat16} # lowestChild
try: floatTypes.add(np.float128) # some systems don't have float128              # lowestChild
except: pass                                                                     # lowestChild
intFloatTypes = {*intTypes, *floatTypes}                                         # lowestChild
numericTypes = {*intTypes, *floatTypes, complex, numbers.Number}                 # lowestChild
def allSame(l): return all(t == l[0] for t in l)                                 # allSame
[docs]def tLowest(*ts):                                                                # tLowest
    """Grabs the lowest possible shared type of all the example types.
Example::
    # returns tIter(float)
    tLowest(tIter(float), tList(int))"""                                         # tLowest
    # sort of like array types?                                                  # tLowest
    if all(isinstance(t, tArrayTypes) for t in ts):                              # tLowest
        lC = tLowest(*(lowestChild(t) for t in ts))                              # tLowest
        if all(isinstance(t, tTensor) for t in ts) or all(isinstance(t, tNpArray) for t in ts): # tLowest
            t = ts[0]; rank = t.rank if allSame([t.rank for t in ts]) else None  # tLowest
            child = t.child if allSame([t.child for t in ts]) else None          # tLowest
            return t.__class__(child, rank)                                      # tLowest
    # sort of like list?                                                         # tLowest
    if all(isinstance(t, (tList, tIter, tSet, *tArrayTypes, tCollection)) for t in ts): # tLowest
        lC = tLowest(*(lowestChild(t) for t in ts))                              # tLowest
        if any(isinstance(t, (tIter, tCollection)) for t in ts): return tIter(lC) # tLowest
        return tList(lC)                                                         # tLowest
    # all numeric?                                                               # tLowest
    if all(t in numericTypes for t in ts):                                       # tLowest
        if all(t in intTypes for t in ts): return int                            # tLowest
        if all(t in intFloatTypes for t in ts): return float                     # tLowest
        return numbers.Number                                                    # tLowest
    return tAny()                                                                # tLowest 
def _tCheck(inp, op):                                                            # _tCheck
    a = inferType(inp); out = inp | op; b = inferType(out)                       # _tCheck
    x = checkF(a)(inp); c1 = x is yieldT                                         # _tCheck
    y = checkF(b)(out); c2 = y is yieldT                                         # _tCheck
    z = checkF(op._typehint(a))(y); c3 = z is yieldT                             # _tCheck
    if c1 or c2 or c3:                                                           # _tCheck
        global tCheckData                                                        # _tCheck
        tCheckData = [a, b, c1, c2, c3, inp, out]                                # _tCheck
        raise TypeHintException(f"Type hints are wrong. Hints: inp type ({a}), out type ({b}). Checks: {c1}, {c2}, {c3}. Inp: {inp}, out: {out}") # _tCheck
    return z                                                                     # _tCheck
[docs]class tCheck(cli.BaseCli):                                                       # tCheck
[docs]    def __init__(self):                                                          # tCheck
        """Tool similar to :class:`~k1lib.cli.trace.trace` to check whether
all type hint outputs of all clis are good or not. Example::
    assert range(1, 3) | tCheck() | item() | op()*2 == 2
Mainly used in cli unit tests. Return type of statement will be :class:`tCheck`,
which might be undesirable, so you can pipe it to :data:`yieldT` like this::
    # returns tCheck object
    range(1, 3) | tCheck() | item() | op()*2
    # returns number "2"
    range(1, 3) | tCheck() | item() | op()*2 | yieldT"""                         # tCheck
        self.inp = None                                                          # tCheck 
[docs]    def __ror__(self, v): self.inp = v; return self                              # tCheck 
    def __or__(self, op):                                                        # tCheck
        if op is yieldT: return self.inp                                         # tCheck
        self.inp = _tCheck(self.inp, op); return self                            # tCheck
    def __eq__(self, v): return self.inp == v                                    # tCheck 
[docs]class tOpt(cli.BaseCli):                                                         # tOpt
    _passes = [];     _serialPasses = []                                         # tOpt
    _passStruct = {}; _serialStruct = {}                                         # tOpt
    n = 10                                                                       # tOpt
[docs]    def __init__(self):                                                          # tOpt
        """Optimizes clis. Let's say you have something
like this::
    range(1000) | toList() | head() | deref()
For whatever reason you forgot that you've dereferenced everything
in the middle, although you're only using 10 first elements, so the
code can't be lazy anymore. You can apply optimizations to it like this::
    range(1000) | tOpt() | toList() | head() | deref()
This will effectively turn it into this::
    range(1000) | tOpt() | head() | deref()
Normally, you'd use it in this form instead::
    # returns the optimized cli
    f = "file.txt" | tOpt() | cat() | shape(0) | tOpt
    # then you can do this to pass it through as usual
    "other file.txt" | f
Checkout the `llvm optimizer tutorial <llvm.html>` for a more in-depth explanation of this
More over, this combines nicely with :class:`~k1lib.cli.trace.trace` like this::
    range(5) | tOpt() | trace() | apply(op()**2) | deref()"""                    # tOpt
        self.inp = None; self.clis = []                                          # tOpt
        self._out = yieldT                                                       # tOpt 
    @staticmethod                                                                # tOpt
    def _addBasePass(p, abstractness=1):                                         # tOpt
        """Adds an optimization pass that acts upon a single cli.
Example::
    def o1(c:BaseCli, t:tBase):
        if ...:
            return aS(lambda x: x**2)
        else:
            return None
    tOpt._addBasePass(o1, 6)
"""                                                                              # tOpt
        tOpt._passes.append([p, round(max(min(abstractness, 2), 1))])            # tOpt
        passStruct = {}                                                          # tOpt
        for a1 in range(2, 0, -1):                                               # tOpt
            passStruct[a1] = []                                                  # tOpt
            for p, a2 in tOpt._passes:                                           # tOpt
                if a2 == a1: passStruct[a1].append(p)                            # tOpt
        tOpt._passStruct = passStruct                                            # tOpt
[docs]    @staticmethod                                                                # tOpt
    def addPass(p, klasses:List[cli.BaseCli]=[], abstractness=3):                # tOpt
        """Adds an optimization pass that acts upon multiple clis in series.
Example::
    # cs: list of clis, ts: list of input type hints, 1 for each cli
    def o1(cs:List[BaseCli], ts:List[tBase], metadata={}):
        return [cs[1], cs[0]] # reorder the clis
    tOpt.addPass(o1, [toList, head], 3)
Here, we're declaring an optimization pass ``o1``. You will be given a list of cli
objects, the cli's input type hints and some extra metadata. If you can optimize
it, then you should return a list of new clis, else you should return None
Also, ``abstractness`` has varying number of legal values:
- 1-5: generic optimizations
- 6-10: analysis passes. Passes must not return anything
Higher abstraction optimizations will be called first, and then lower abstraction
optimizations will be called later. So, the idea is, just like LLVM, you can do
some analysis which will compute metadata that you can use in your optimization
passes, which will return optimized clis if it can.
Within optimization passes, you can prioritize optimizations that look at the global
picture first, before breaking the code up into tiny fragments with more detailed
optimizations, at which point it's hard to look at the global picture.
:param p: the optimization pass
:param klasses: list of cli classes in series that will trigger the pass
:param abstractness: how abstract is this optimization"""                        # tOpt
        tOpt._serialPasses.append([p, tuple(klasses), round(max(min(abstractness, 15), 1))]) # tOpt
        serialStruct = {}                                                        # tOpt
        for a1 in range(15, 0, -1):                                              # tOpt
            serialStruct[a1] = defaultdict(lambda: [])                           # tOpt
            for p, klasses, a2 in tOpt._serialPasses:                            # tOpt
                if a2 == a1: serialStruct[a1][klasses].append(p)                 # tOpt
        tOpt._serialStruct = serialStruct                                        # tOpt 
[docs]    @staticmethod                                                                # tOpt
    def clearPasses():                                                           # tOpt
        """Clears all passes"""                                                  # tOpt
        tOpt._passes = [];     tOpt._serialPasses = []                           # tOpt
        tOpt._passStruct = {}; tOpt._serialStruct = {}                           # tOpt
        addSerialOpt()                                                           # tOpt 
    @property                                                                    # tOpt
    def out(self):                                                               # tOpt
        if self._out == yieldT:                                                  # tOpt
            if isinstance(self.inp, cli.BaseCli):                                # tOpt
                self.clis = [self.inp, *self.clis]; self.inp = None              # tOpt
            # why wrap 2 times? We want passes to select klasses=[serial]        # tOpt
            c = cli.serial(cli.serial(*self.clis)); t = inferType(self.inp)      # tOpt
            # start optimization passes here                                     # tOpt
            for i in range(tOpt.n):                                              # tOpt
                atLeastOnce = False #print("-"*50)                               # tOpt
                for passes in tOpt._passStruct.values():                         # tOpt
                    for p in passes:                                             # tOpt
                        repl = p(c, t)                                           # tOpt
                        if repl is not None: atLeastOnce = True; c = repl # optimized version # tOpt
                if not atLeastOnce: break                                        # tOpt
            assert isinstance(c, cli.serial) and len(c.clis) == 1                # tOpt
            self._optCli = c.clis[0]; self._out = self.inp | c                   # tOpt
        return self._out                                                         # tOpt
    @property                                                                    # tOpt
    def optCli(self):                                                            # tOpt
        """Grabs the optimized cli.
Example::
    # returns optimized cli
    (range(5) | tOpt() | apply(op()**2) | deref()).optCli
    # you can also do it like this:
    range(5) | tOpt() | apply(op()**2) | deref() | tOpt.optCli
    # or even shorter like this:
    range(5) | tOpt() | apply(op()**2) | deref() | tOpt
"""                                                                              # tOpt
        self.out; return self._optCli                                            # tOpt
[docs]    def __ror__(self, it): self.inp = it; return self                            # tOpt 
    def __iter__(self): return iter(self.out)                                    # tOpt
    def __or__(self, o):                                                         # tOpt
        if o is yieldT: return self.out                                          # tOpt
        if o is tOpt.optCli or o is tOpt:                                        # tOpt
            return self.optCli                                                   # tOpt
        self.clis.append(o); return self                                         # tOpt
    def __repr__(self): return f"{self.out}"                                     # tOpt
    def __eq__(self, v): return self.out == v                                    # tOpt
    def __bool__(self): return self.out                                          # tOpt 
class window(cli.BaseCli):                                                       # window
    def __init__(self, n, newList=False):                                        # window
        self.n = n                                                               # window
    def __ror__(self, it):                                                       # window
        n = self.n; before = []; q = deque([], n)                                # window
        it = iter(it)                                                            # window
        for e in it:                                                             # window
            q.append(e)                                                          # window
            if len(q) == n:                                                      # window
                yield before, tuple(q), it; before.append(q.popleft())           # window
def grabTypes(cs, t):                                                            # grabTypes
    ts = [t]                                                                     # grabTypes
    for c in cs: t = c._typehint(t); ts.append(t)                                # grabTypes
    return ts                                                                    # grabTypes
def grabKlasses(iKlasses): return [type(e) for e in iKlasses]                    # grabKlasses
depth = 0; debug = False                                                         # grabKlasses
def serialOpt(c, t, metadata=None):                                              # serialOpt
    """Optimizes ``c``, which is supposed to be a :class:`~init.serial`
object, with the input type hint ``t``. If it can actually optimize it,
then it will return a new :class:`~init.serial` object, else it returns
None."""                                                                         # serialOpt
    if debug: global depth; depth += 1; print(f"serial depth: {depth}")          # serialOpt
    if metadata is None: metadata = {"route": []}                                # serialOpt
    # returns None, or a new serial object                                       # serialOpt
    if not isinstance(c, cli.serial):                                            # serialOpt
        if debug: print(f"out depth, not serial: {depth}"); depth -= 1           # serialOpt
        return None                                                              # serialOpt
    metadata["route"].append("serial")                                           # serialOpt
    cs = c.clis; ts = grabTypes(cs, t)                                           # serialOpt
    if debug: print(f"serialOpt: {[c.__class__.__name__ for c in cs]}, {ts}")    # serialOpt
    for windowSize in range(1, len(cs)+1):                                       # serialOpt
        for a, e, c in [cs, ts] | cli.transpose() | window(windowSize):          # serialOpt
            iKlasses, ths = e | cli.transpose()                                  # serialOpt
            klasses = tuple(type(e) for e in iKlasses)                           # serialOpt
            #print(klasses)                                                      # serialOpt
            for e in tOpt._serialStruct.values():                                # serialOpt
                if klasses in e:                                                 # serialOpt
                    for p in e[klasses]:                                         # serialOpt
                        res = p(iKlasses, ths, metadata)                         # serialOpt
                        #print(f"serial p: {p}, res: {0}, klasses: {klasses}")   # serialOpt
                        if res is not None:                                      # serialOpt
                            a = a | cli.toList(); c = c | cli.toList()           # serialOpt
                            if debug: print(f"out depth new: {depth}"); depth -= 1 # serialOpt
                            metadata["route"].pop()                              # serialOpt
                            return cli.serial(*(a | cli.transpose() | cli.item() if len(a) > 0 else []), # serialOpt
                                *res,                                            # serialOpt
                                *(c | cli.transpose() | cli.item() if len(c) > 0 else [])) # serialOpt
    if debug: print(f"out depth none: {depth}"); depth -= 1                      # serialOpt
    metadata["route"].pop()                                                      # serialOpt
def addSerialOpt():                                                              # addSerialOpt
    tOpt._addBasePass(serialOpt, 5)                                              # addSerialOpt
    def inner(cs, ts, metadata):                                                 # addSerialOpt
        res = serialOpt(cs[0], ts[0], metadata)                                  # addSerialOpt
        return None if res is None else [res]                                    # addSerialOpt
    tOpt.addPass(inner, [cli.serial], 15)                                        # addSerialOpt
    try: cli.optimizations.basics() # cyclic include, so mainly intended for regular use after first initialization # addSerialOpt
    except: pass                                                                 # addSerialOpt
tOpt.clearPasses();                                                              # addSerialOpt