# AUTOGENERATED FILE! PLEASE DON'T EDIT
import re, difflib, k1lib
from typing import Dict, Union, List, Optional
__all__ = ["Eqn", "Eqns", "System"]
settings = k1lib.Settings()
settings.spaceBetweenValueSymbol = True
settings.eqnPrintExtras = True
k1lib.settings.add("eqn", settings, "from k1lib.eqn module");
[docs]class Eqn:
[docs] def __init__(self, system:"System"):
"""Creates a blank equation. Not expected to be instantiated by
the end user."""
self.system = system
self.terms:Dict[str, float] = {}
def removeZeros(self):
self.terms = {k: v for k, v in self.terms.items() if abs(v) > 1e-6}; return self
def parse(self, line:str):
line = line.strip().replace(" +", "+").replace("+ ", "+").replace(" ->", "->").replace("-> ", "->")
reactants, products = line.split("->")
for i, side in enumerate(line.split("->")):
sign = i * 2 - 1
for e in side.split("+"): # side is reactants or products
e = e.strip()
number = re.findall("^[0-9.\/]*", e)[0]
term, number = (e, 1) if number == "" else (e[e.find(number) + len(number):], eval(str(number)))
term = term.strip(); self.system.terms.add(term)
if term not in self: self[term] = 0
self[term] += sign * number
return self.removeZeros()
[docs] def save(self):
"""Saves this (potentially new) equation to the system, so that it
can be used directly later on"""
self.system.parse(str(self)); return self
[docs] def __contains__(self, x:str):
"""Whether a term is in this equation"""
return x in self.terms
[docs] def __getattr__(self, term:str):
"""Gets the value of the term in this equation. Negative if on
consumer side, positive if on producer side"""
if term in self.terms: return self.terms[term]
else: return 0
def __setitem__(self, idx:str, value:float): self.terms[idx] = value; return self
[docs] def __getitem__(self, idx:str):
"""Same as :meth:`__getattr__`"""
return getattr(self, idx)
[docs] def __iter__(self):
"""Yields key:value pairs"""
for k, v in self.terms.items(): yield k, v
[docs] def __len__(self):
"""Returns number of terms in this equation"""
return len(self.terms)
[docs] def __hash__(self): return hash(tuple(self.terms.keys()))
def __str__(self):
a = " + ".join((f"{-v}{k}" for k, v in self.terms.items() if v < 0))
b = " + ".join((f"{v}{k}" for k, v in self.terms.items() if v > 0))
return f"{a} -> {b}"
[docs] def copy(self):
answer = Eqn(self.system)
answer.terms = dict(self.terms); return answer
def __repr__(self, printExtras=None):
space = " " if settings.spaceBetweenValueSymbol else ""
def formatValue(value:float):
if abs(value - 1) < 1e-9: return ""
if abs(value - round(value)) < 1e-9:
return f"{round(value)}{space}"
return f"{round(value, 3)}{space}"
a = " + ".join((f"{formatValue(-v)}{k}" for k, v in self.terms.items() if v < 0))
b = " + ".join((f"{formatValue(v)}{k}" for k, v in self.terms.items() if v > 0))
answer = f"{a} \033[1m->\033[0m {b}"
printExtras = printExtras if printExtras is not None else settings.eqnPrintExtras
return answer if not printExtras else f"""{answer}. Can...
- "MJ" in eqn: to check whether this equation has a specific term
- eqn["MJ"], or eqn.MJ: to get the actual value of the term
- eqn.terms: to get dict of all term -> values
- eqn["MJ"] = 5: to modify a term's value
- eqn * 2: to use normal math operations on the entire equation
- eqn1 @ eqn2: to try to zero out some common terms, useful for unit conversions
- eqn1 == eqn2: see if 2 equations are the same, scale invariant
- for term, value in eqn: to loop over every term and its value
- len(eqn): to get number of terms in the equation
- eqn.copy()"""
def __mul__(self, number:float):
answer = self.copy()
answer.terms = {k: v*number for k, v in self.terms.items()}
return answer.removeZeros()
def __rmul__(self, number:float): return self.__mul__(number)
def __neg__(self): return -1 * self
def __truediv__(self, number:float):
answer = self.copy()
answer.terms = {k: v/number for k, v in self.terms.items()}
return answer.removeZeros()
def __rtruediv__(self, number:float): raise Exception("Can't be divided by a number. It doesn't mean anything")
def __add__(self, eqn):
answer = self.copy(); answer.terms = {}
for term, value in self: answer[term] = value + eqn[term]
for term, value in eqn:
if term not in answer: answer[term] = value + self[term]
return answer.removeZeros()
def __sub__(self, eqn): return self + -1*eqn
def __eq__(self, eqn):
if len(self) != len(eqn): return False
if set(self.terms.keys()) != set(eqn.terms.keys()): return False
term = list(self.terms.keys())[0]
eqn = eqn * self[term] / eqn[term]
for term, value in self:
if abs(self[term] - eqn[term]) > 1e-9: return False
return True
[docs] def sharedTerms(self, eqn:"Eqn") -> List[str]:
"""Gets a list of shared terms between this equation and the
specified one."""
ts = set(self.terms.keys())
return [t for t in eqn.terms.keys() if t in ts]
[docs] def join(self, eqn:"Eqn", term:str) -> "Eqn":
"""Tries to cancel out this equation with another equation at the
specified term. Example::
s = eqn.System(\"\"\"a + b -> c + d
c + 2e -> f\"\"\")
s.a.c.join(s.c.f, "c") # returns the equation "a + b + 2e -> d + f"
For simpler cases, where the shared term to be joined is obvious, use
:meth:`__matmul__` instead"""
return self + eqn * (-self[term]/eqn[term])
[docs] def __matmul__(self, eqn:"Eqn") -> "Eqn":
"""Convenience method that does the same thing as :meth:`join`.
Example::
s = eqn.System(\"\"\"a + b -> c + d
c + 2e -> f\"\"\")
s.a.c @ s.c.f # returns the equation "a + b + 2e -> d + f"
Preference order of which term to join:
1) If term is on producer side of ``self``, and consumer side of ``eqn``
2) If term is on consumer side of ``self``, and producer side of ``eqn``
3) Other cases"""
sharedTerms = self.sharedTerms(eqn)
def sortF(term):
if self[term] > 0 and eqn[term] < 0: return 0
if self[term] < 0 and eqn[term] > 0: return 1
return 2
sharedTerms = sorted(sharedTerms, key=sortF)
if len(sharedTerms) == 0: return None
return self.join(eqn, sharedTerms[0])
[docs] def round(self, term:str, amount:float=10) -> "Eqn":
"""Rounds the equation off, so that the term's value
is the specified amount. For aesthetic purposes mainly. Example::
s = eqn.System("a + b -> 2c")
s.a.c.round("c", 5) # returns the equation "2.5a + 2.5b -> 5c"'"""
if term not in self: raise AttributeError(term)
return self * amount / self[term]
[docs] def __round__(self, term:str=None) -> "Eqn":
"""Like :meth:`round`, but more Pythonic?
:param term: Can be any of these:
- None
- str
- Union[int, float]
- Tuple[str, float]"""
defaultTerm = list(self.terms.keys())[-1]
if term is None: return self.round(defaultTerm, 1)
elif isinstance(term, (tuple, list)): return self.round(*term)
elif isinstance(term, str): return self.round(term, 1)
elif k1lib.isNumeric(term): return self.round(defaultTerm, term)
else: raise AttributeError(f"Don't understand {term}")
[docs]class Eqns:
[docs] def __init__(self, system:"System", eqns:List[Eqn], focusTerm:str=None):
"""Creates a new list of equations. Not expected to be instantiated
by the end user.
:param system: injected :class:`System`
:param eqns: list of equations
:param focusTerm: if the list of equations are from the result of focusing
in a single term, then use this parameter to prioritize certain search
parameters.
"""
self.system = system; self.eqns = eqns; self.terms = set()
for eqn in eqns: self.terms.update(eqn.terms.keys())
self.focusTerm = focusTerm
[docs] def __getitem__(self, idx:Union[int, str]) -> Optional[Eqn]:
"""If int, return the equation with that index. Not really helpful
for exploring the system of equations, but good for automated scripts
If string, then effectively the same as :meth:`__getattr__`
"""
return self.eqns[idx] if isinstance(idx, int) else getattr(self, idx)
[docs] def __getattr__(self, term:str) -> Optional[Eqn]:
"""Picks out a specific :class:`Eqn` that has the specified term.
Prefer shorter equations, and the returned :class:`Eqn` always have the
term on the products side. Meaning::
eqns = eqn.System("a + 2b -> c").b # gets an Eqns object with that single equation
eqns.a # gets the equation "c -> a + 2b" instead
This is a convenience way to search for equations. If you need more
granularity, use :meth:`pick` instead"""
chosenEqns = []
for eqn in self.eqns:
if term in eqn:
chosenEqns.append(eqn if eqn[term] > 0 else -eqn)
chosenEqns = sorted(chosenEqns, key=lambda eqn: len(eqn))
return None if len(chosenEqns) == 0 else chosenEqns[0]
[docs] def pick(self, *terms:List[str]) -> Optional[Eqn]:
"""Like the quick method (:meth:`__getattr__`), but here, picks
equations more carefully, with selection for multiple terms. Example::
s = eqn.System(\"\"\"a + 2b -> c
b + c -> d
a -> 3d
a + b + c -> 2d\"\"\")
s.a.pick("b", "d") # returns last equation
As you can see, it's impossible to pick out the last equation using
:meth:`__getattr__` alone, as they will all prefer the shorter equations,
so this is where :meth:`pick` can be useful."""
chosenEqns = []; t = self.focusTerm or terms[0]
for eqn in self.eqns:
if all((term in eqn for term in terms)):
chosenEqns.append(eqn if eqn[t] > 0 else -eqn)
chosenEqns = sorted(chosenEqns, key=lambda eqn: len(eqn))
return None if len(chosenEqns) == 0 else chosenEqns[0]
[docs] def __dir__(self):
"""Returns the list of terms in every equation here. Useful for
tab completion."""
return list(self.terms)
def __repr__(self):
end = """Can...
- eqns[i]: to get the 'i'th equation
- eqns.C: to pick out the first equation that has term 'C'"""
if self.focusTerm == None:
eqns = "\n".join([f"{i}. {eqn.__repr__(printExtras=False)}" for i, eqn in enumerate(self.eqns)])
return f"""Equations:\n{eqns}\n\n{end}"""
else:
consumingEqns = []; producingEqns = []
for eqn in self.eqns:
if eqn[self.focusTerm] < 0:
consumingEqns.append(f"{eqn.__repr__(printExtras=False)}")
else: producingEqns.append(f"{eqn.__repr__(printExtras=False)}")
consumingEqns = "\n".join([f"{i}. {eqn}" for i, eqn in enumerate(consumingEqns)])
producingEqns = "\n".join([f"{i}. {eqn}" for i, eqn in enumerate(producingEqns)])
return f"""Consumers:\n{consumingEqns}\n\nProducers:\n{producingEqns}\n\n{end}"""
[docs]class System:
[docs] def __init__(self, strToParse:str=None):
"""Creates a new system of equations.
:param strToParse: if specified, then it gets feed into :meth:`parse`"""
self.terms = set()
self.eqns = []
if strToParse is not None: self.parse(strToParse)
def parse(self, lines:str) -> "System":
"""Parses extra equations and saves them to this :class:`System`"""
lines = (line for line in lines.split("\n") if line != "" and not line.startswith("#"))
self.eqns += [Eqn(self).parse(line) for line in lines if not line.startswith("#")]
self.eqns = list(set(self.eqns))
return self
[docs] def spellCheck(self):
"""Runs a spell check to find out terms that are pretty similar to
each other"""
print("Similar terms:"); terms = list(self.terms)
for i, iTerm in enumerate(terms):
for j, jTerm in enumerate(terms[i+1:]):
if iTerm[:-1] == jTerm[:-1]: continue
if abs(len(iTerm) - len(jTerm)) > 2: continue
r = difflib.SequenceMatcher(None, iTerm, jTerm).ratio()
if r < 0.9: continue
print(f"- {round(r*100)}% similar: {iTerm}, {jTerm}")
[docs] def __len__(self): return len(self.eqns)
[docs] def __getitem__(self, idx:int) -> Eqn:
"""Picks out the i'th equation from the list of equations. Useful
for automated scripts"""
return self.eqns[idx]
[docs] def __getattr__(self, term:str) -> Eqns:
"""Picks out equations that has the term"""
return Eqns(self, [eqn for i, eqn in enumerate(self.eqns) if term in eqn], focusTerm=term)
[docs] def __dir__(self):
"""Returns the list of terms in every equation here. Useful for
tab completion."""
return list(self.terms)
def __repr__(self):
return f"""System of {len(self)} equations:\n{Eqns(self, self.eqns)}\n
Can...
- s[i]: to get a specific equation
- s.C: to get all equations that involve a specific substance "C"
- s.spellCheck(): to check if there are terms that are close to each other
"""