k1lib.cli module¶
The main idea of this package is to emulate the terminal (hence “cli”, or “command line interface”), but doing all of that inside Python itself. So this bash statement:
cat file.txt | head -5 > headerFile.txt
Turns into this statement:
cat("file.txt") | head(5) > file("headerFile.txt")
You can even integrate with existing shell commands:
ls("~") | cmd("grep so")
Here, “ls” will list out files inside the home directory, then pipes it into regular grep on linux, which is then piped back into Python as a list of strings. So it’s equivalent to this bash statement:
ls | grep so
“cat”, “head”, “file”, “ls” and “cmd” are all classes extended from
BaseCli
. All of them implements the “reverse or” operation, or
__ror__. So essentially, these 2 statements are equivalent:
3 | obj
obj.__ror__(3)
Also, a lot of these tools (like apply
and filt
)
assume that we are operating on a table. So this table:
col1 |
col2 |
col3 |
---|---|---|
1 |
2 |
3 |
4 |
5 |
6 |
Is equivalent to this list:
[["col1", "col2", "col3"], [1, 2, 3], [4, 5, 6]]
transpose
and mtmS
provides more flexible ways
to transform a table structure (but usually involves more code).
Also, the expected way to use these tools is to import everything directly into the current environment, like this:
from k1lib.imports import *
If you just want clis without other baggage, you can do this:
from k1lib.cli import *
Because there are a lot of clis, you may sometimes unintentionally overwrite an
exposed cli tool. No worries, every tool is also under the cli
object, meaning
you can use deref()
or cli.deref()
.
Besides operating on string iterators alone, this package can also be extra meta, and operate on streams of strings, or streams of streams of anything. I think this is one of the most powerful concept of the cli workflow. If this interests you, check over this:
All cli tools should work fine with torch.Tensor
, numpy.ndarray
and pandas.core.series.Series
,
but k1lib actually modifies Numpy arrays and Pandas series deep down for it to work.
This means that you can still do normal bitwise or with a numpy float value, and
they work fine in all regression tests that I have, but you might encounter strange bugs.
You can disable it manually by changing settings
.startup.or_patch. If you
chooses to do this, you have to be careful and use these workarounds:
# returns (2, 3, 5), works fine
torch.randn(2, 3, 5) | shape()
# will not work, returns weird numpy array of shape (2, 3, 5)
np.random.randn(2, 3, 5) | shape()
# returns (2, 3, 5), mitigation strategy #1
shape()(np.random.randn(2, 3, 5))
# returns (2, 3, 5), mitigation strategy #2
[np.random.randn(2, 3, 5)] | (item() | shape())
All cli-related settings are at settings
.cli.
Where to start?¶
Core clis include:
Then other important, not necessarily core clis include:
So, start reading over what these do first, as you can pretty much 95% utilize everything
the cli workflow has to offer with those alone. Then skim over basic conversions in
module conv
. While you’re doing that, checkout trace()
,
for a quite powerful debugging tool.
There are several written tutorials about cli here, and I also made some video tutorials as well, so go check those out.
For every example in the tutorials that you found, you might find it useful to follow the following debugging steps, to see how everything works:
# assume there's this piece of code:
A | B | C | D
# do this instead:
A | deref()
# once you understand it, do this:
A | B | deref()
# assume there's this piece of code:
A | B.all() | C
# do this instead:
A | item() | B | deref()
# once you understand it, you can move on:
A | B.all() | deref()
# assume there's this piece of code:
A | (B & C)
# do this instead:
A | B | deref()
# assume there's this piece of code:
A | (B + C)
# do these instead:
A | deref() | op()[0] | B | deref()
A | deref() | op()[1] | C | dereF()
# there are alternatives to that:
A | item() | B | deref()
A | rows(1) | item() | C | deref()
Finally, you can read over the summary below, see what catches your eye and check that cli out.
Summary¶
structural |
conv |
utils |
typehint |
filt |
---|---|---|---|---|
|
||||
|
||||
|
||||
|
||||
modifier |
init |
output |
inp |
kxml |
---|---|---|---|---|
|
||||
|
||||
nb |
grep |
kcsv |
trace |
optimizations |
---|---|---|---|---|
bio module¶
This is for functions that are actually biology-related
-
k1lib.cli.bio.
quality
(log=True)[source]¶ Get numeric quality of sequence. Example:
# returns [2, 2, 5, 30] "##&?" | quality() | deref()
- Parameters
log – whether to use log scale (0 -> 40), or linear scale (1 -> 0.0001)
-
k1lib.cli.bio.
longFa
()[source]¶ Takes in a fasta file and put each sequence on 1 line. File “gene.fa”:
>AF086833.2 Ebola virus - Mayinga, Zaire, 1976, complete genome CGGACACACAAAAAGAAAGAAGAATTTTTAGGATC TTTTGTGTGCGAATAACTATGAGGAAGATTAATAA >something other gene CGGACACACAAAAAGAAAGAAGA TTTTGTGTGCGAATAACTATGAG
Code:
cat("gene.fa") | bio.longFa() | cli.headOut()
Prints out:
>AF086833.2 Ebola virus - Mayinga, Zaire, 1976, complete genome CGGACACACAAAAAGAAAGAAGAATTTTTAGGATCTTTTGTGTGCGAATAACTATGAGGAAGATTAATAA >something other gene CGGACACACAAAAAGAAAGAAGATTTTGTGTGCGAATAACTATGAG
-
class
k1lib.cli.bio.
idx
(fs: list = [])[source]¶ Bases:
k1lib.cli.init.BaseCli
Indexes files with various formats.
-
static
blast
(fileName: Optional[str] = None, dbtype: Optional[str] = None)[source]¶ Uses
makeblastdb
to create a blast database from a fasta file. Example:"file.fa" | bio.idx.blast() bio.idx.blast("file.fa")
-
static
-
class
k1lib.cli.bio.
transcribe
(fs: list = [])[source]¶ Bases:
k1lib.cli.init.BaseCli
Transcribes (DNA -> RNA) incoming rows. Example:
# returns "AUCG" "ATCG" | transcribe() # returns ["AUCG"] ["ATCG"] | transcribe() | deref()
-
class
k1lib.cli.bio.
complement
(fs: list = [])[source]¶ Bases:
k1lib.cli.init.BaseCli
Get the reverse complement of DNA. Example:
# returns "TAGC" "ATCG" | bio.complement() # returns ["TAGC"] ["ATCG"] | bio.complement() | deref()
-
class
k1lib.cli.bio.
translate
(length: int = 0)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
class
k1lib.cli.bio.
medAa
(fs: list = [])[source]¶ Bases:
k1lib.cli.init.BaseCli
Converts short aa sequence to medium one
cif module¶
All tools related to cif file format that describes protein structures. Expected to use behind the “cif” module name, like this:
from k1lib.imports import *
cif.cat("abc.cif")
conv module¶
This is for all short utilities that converts from 1 data type to another. They
might feel they have different styles, as toFloat
converts object iterator to
float iterator, while toPIL
converts single image url to single PIL image,
whereas toSum
converts float iterator into a single float value.
The general convention is, if the intended operation sounds simple (convert to floats, strings, types, …), then most likely it will convert iterator to iterator, as you can always use the function directly if you only want to apply it on 1 object.
If it sounds complicated (convert to PIL image, tensor, …) then most likely it will convert object to object. Lastly, there are some that just feels right to input an iterator and output a single object (like getting max, min, std, mean values).
-
class
k1lib.cli.conv.
toStr
(column: Optional[int] = None)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
class
k1lib.cli.conv.
toTensor
(dtype=torch.float32)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(dtype=torch.float32)[source]¶ Converts generator to
torch.Tensor
. Essentiallytorch.tensor(list(it))
.Also checks if input is a PIL Image. If yes, turn it into a
torch.Tensor
and return.
-
__ror__
(it: Iterator[float]) → torch.Tensor[source]¶
-
-
class
k1lib.cli.conv.
toList
[source]¶ Bases:
k1lib.cli.init.BaseCli
-
class
k1lib.cli.conv.
toSet
[source]¶ Bases:
k1lib.cli.init.BaseCli
-
class
k1lib.cli.conv.
toIter
[source]¶ Bases:
k1lib.cli.init.BaseCli
-
class
k1lib.cli.conv.
toRange
[source]¶ Bases:
k1lib.cli.init.BaseCli
-
class
k1lib.cli.conv.
toSum
[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
()[source]¶ Calculates the sum of list of numbers. Can pipe in
torch.Tensor
ornumpy.ndarray
. Example:# returns 45 range(10) | toSum()
-
-
class
k1lib.cli.conv.
toProd
[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
()[source]¶ Calculates the product of a list of numbers. Can pipe in
torch.Tensor
ornumpy.ndarray
. Example:# returns 362880 range(1,10) | toProd()
-
-
class
k1lib.cli.conv.
toAvg
[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
()[source]¶ Calculates average of list of numbers. Can pipe in
torch.Tensor
ornumpy.ndarray
. Example:# returns 4.5 range(10) | toAvg() # returns nan [] | toAvg()
-
-
k1lib.cli.conv.
toMean
¶ alias of
k1lib.cli.conv.toAvg
-
class
k1lib.cli.conv.
toMax
[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
()[source]¶ Calculates the max of a bunch of numbers. Can pipe in
torch.Tensor
ornumpy.ndarray
. Example:# returns 6 [2, 5, 6, 1, 2] | toMax()
-
-
class
k1lib.cli.conv.
toMin
[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
()[source]¶ Calculates the min of a bunch of numbers. Can pipe in
torch.Tensor
ornumpy.ndarray
. Example:# returns 1 [2, 5, 6, 1, 2] | toMin()
-
-
class
k1lib.cli.conv.
toPIL
[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
()[source]¶ Converts a path to a PIL image. Example:
ls(".") | toPIL().all() | item() # get first image
-
__ror__
(path) → PIL.Image.Image[source]¶
-
-
k1lib.cli.conv.
toImg
¶ alias of
k1lib.cli.conv.toPIL
-
class
k1lib.cli.conv.
toRgb
[source]¶ Bases:
k1lib.cli.init.BaseCli
-
class
k1lib.cli.conv.
toRgba
[source]¶ Bases:
k1lib.cli.init.BaseCli
-
class
k1lib.cli.conv.
toBin
[source]¶ Bases:
k1lib.cli.init.BaseCli
-
class
k1lib.cli.conv.
toIdx
(chars: str)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
class
k1lib.cli.conv.
toDict
[source]¶ Bases:
k1lib.cli.init.BaseCli
-
class
k1lib.cli.conv.
toDictF
(keyF: Optional[Callable[[Any], str]] = None, valueF: Optional[Callable[[Any], Any]] = None)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(keyF: Optional[Callable[[Any], str]] = None, valueF: Optional[Callable[[Any], Any]] = None)[source]¶ Transform an incoming stream into a dict using a function for values. Example:
names = ["wanda", "vision", "loki", "mobius"] names | toDictF(valueF=lambda s: len(s)) # will return {"wanda": 5, "vision": 6, ...} names | toDictF(lambda s: s.title(), lambda s: len(s)) # will return {"Wanda": 5, "Vision": 6, ...}
-
-
class
k1lib.cli.conv.
toFloat
(*columns, mode=2)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(*columns, mode=2)[source]¶ Converts every row into a float. Example:
# returns [1, 3, -2.3] ["1", "3", "-2.3"] | toFloat() | deref() # returns [[1.0, 'a'], [2.3, 'b'], [8.0, 'c']] [["1", "a"], ["2.3", "b"], [8, "c"]] | toFloat(0) | deref()
With weird rows:
# returns [[1.0, 'a'], [8.0, 'c']] [["1", "a"], ["c", "b"], [8, "c"]] | toFloat(0) | deref() # returns [[1.0, 'a'], [0.0, 'b'], [8.0, 'c']] [["1", "a"], ["c", "b"], [8, "c"]] | toFloat(0, force=True) | deref()
This also works well with
torch.Tensor
andnumpy.ndarray
, as they will not be broken up into an iterator:# returns a numpy array, instead of an iterator np.array(range(10)) | toFloat()
- Parameters
columns – if nothing, then will convert each row. If available, then convert all the specified columns
mode – different conversion styles - 0: simple
float()
function, fastest, but will throw errors if it can’t be parsed - 1: if there are errors, then replace it with zero - 2: if there are errors, then eliminate the row
-
-
class
k1lib.cli.conv.
toInt
(*columns, mode=2)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(*columns, mode=2)[source]¶ Converts every row into an integer. Example:
# returns [1, 3, -2] ["1", "3", "-2.3"] | toInt() | deref()
- Parameters
columns – if nothing, then will convert each row. If available, then convert all the specified columns
mode – different conversion styles - 0: simple
float()
function, fastest, but will throw errors if it can’t be parsed - 1: if there are errors, then replace it with zero - 2: if there are errors, then eliminate the row
See also:
toFloat()
-
mgi module¶
All tools related to the MGI database. Expected to use behind the “mgi” module name, like this:
from k1lib.imports import *
["SOD1", "AMPK"] | mgi.batch()
filt module¶
This is for functions that cuts out specific parts of the table
-
class
k1lib.cli.filt.
filt
(predicate: Callable[[T], bool], column: Optional[int] = None)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(predicate: Callable[[T], bool], column: Optional[int] = None)[source]¶ Filters out lines. Examples:
# returns [2, 6] [2, 3, 5, 6] | filt(lambda x: x%2 == 0) | deref() # returns [3, 5] [2, 3, 5, 6] | ~filt(lambda x: x%2 == 0) | deref() # returns [[2, 'a'], [6, 'c']] [[2, "a"], [3, "b"], [5, "a"], [6, "c"]] | filt(lambda x: x%2 == 0, 0) | deref()
You can also pass in
op
, for extra intuitiveness:# returns [2, 6] [2, 3, 5, 6] | filt(op() % 2 == 0) | deref() # returns ['abc', 'a12'] ["abc", "def", "a12"] | filt(op().startswith("a")) | deref() # returns [3, 4, 5, 6, 7, 8, 9] range(100) | filt(3 <= op() < 10) | deref()
If you need more extensive filtering capabilities, check out
grep
- Parameters
column –
if integer, then predicate(row[column])
if None, then predicate(row)
-
-
k1lib.cli.filt.
inSet
(values: Set[Any], column: Optional[int] = None) → k1lib.cli.filt.filt[source]¶ Filters out lines that is not in the specified set. Example:
# returns [2, 3] range(5) | inSet([2, 8, 3]) | deref() # returns [0, 1, 4] range(5) | ~inSet([2, 8, 3]) | deref()
You can also use
op
like this, so you don’t have to remember this cli:# returns [2, 3] range(5) | filt(op() in [2, 8, 3]) | deref() # returns [0, 1, 4] range(5) | ~filt(op() in [2, 8, 3]) | deref()
However, this feature is very experimental
-
k1lib.cli.filt.
contains
(s: str, column: Optional[int] = None) → k1lib.cli.filt.filt[source]¶ Filters out lines that don’t contain the specified substring. Sort of similar to
grep
, but this is simpler, and can be inverted. Example:# returns ['abcd', '2bcr'] ["abcd", "0123", "2bcr"] | contains("bc") | deref()
You can also use
op
like this:# returns ['abcd', '2bcr'] ["abcd", "0123", "2bcr"] | filt("bc" in op()) | deref()
-
class
k1lib.cli.filt.
empty
(reverse=False)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(reverse=False)[source]¶ Filters out streams that is not empty. Almost always used inverted, but “empty” is a short, sweet name that’s easy to remember. Example:
# returns [[1, 2], ['a']] [[], [1, 2], [], ["a"]] | ~empty() | deref()
- Parameters
reverse – not intended to be used by the end user. Do
~empty()
instead.
-
-
k1lib.cli.filt.
isNumeric
(column: Optional[int] = None) → k1lib.cli.filt.filt[source]¶ Filters out a line if that column is not a number. Example:
# returns [0, 2, '3'] [0, 2, "3", "a"] | isNumeric() | deref()
-
k1lib.cli.filt.
instanceOf
(cls: Union[type, Tuple[type]], column: Optional[int] = None) → k1lib.cli.filt.filt[source]¶ Filters out lines that is not an instance of the given type. Example:
# returns [2] [2, 2.3, "a"] | instanceOf(int) | deref() # returns [2, 2.3] [2, 2.3, "a"] | instanceOf((int, float)) | deref()
-
class
k1lib.cli.filt.
head
(n=10)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(n=10)[source]¶ Only outputs first
n
lines. You can also negate it (like~head(5)
), which then only outputs after firstn
lines. Examples:"abcde" | head(2) | deref() # returns ["a", "b"] "abcde" | ~head(2) | deref() # returns ["c", "d", "e"] "0123456" | head(-3) | deref() # returns ['0', '1', '2', '3'] "0123456" | ~head(-3) | deref() # returns ['4', '5', '6'] "012" | head(None) | deref() # returns ['0', '1', '2'] "012" | ~head(None) | deref() # returns []
You can also pass in fractional head:
range(20) | head(0.25) | deref() # returns [0, 1, 2, 3, 4], or the first 25% of samples
Also works well and fast with
numpy.ndarray
,torch.Tensor
and other sliceable types:# returns (10,) np.linspace(1, 3) | head(10) | shape()
-
-
k1lib.cli.filt.
tail
(n: int = 10)[source]¶ Basically an inverted
head
. Examples:range(10) | tail(3) | deref() # returns [7, 8, 9]
-
class
k1lib.cli.filt.
columns
(*columns: List[int])[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(*columns: List[int])[source]¶ Cuts out specific columns, sliceable. Examples:
["0123456789"] | cut(5, 8) | deref() # returns [['5', '8']] ["0123456789"] | cut(2) | deref() # returns ['2'] ["0123456789"] | cut(5, 8) | deref() # returns [['5', '8']] ["0123456789"] | ~cut()[:7:2] | deref() # returns [['1', '3', '5', '7', '8', '9']]
If you’re selecting only 1 column, then Iterator[T] will be returned, not Table[T].
-
-
k1lib.cli.filt.
cut
¶ alias of
k1lib.cli.filt.columns
-
class
k1lib.cli.filt.
rows
(*rows: List[int])[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(*rows: List[int])[source]¶ Cuts out specific rows. Space complexity O(1) as a list is not constructed (unless you’re using some really weird slices).
- Parameters
rows – ints for the row indices
Example:
"0123456789" | rows(2) | toList() # returns ["2"] "0123456789" | rows(5, 8) | toList() # returns ["5", "8"] "0123456789" | rows()[2:5] | toList() # returns ["2", "3", "4"] "0123456789" | ~rows()[2:5] | toList() # returns ["0", "1", "5", "6", "7", "8", "9"] "0123456789" | ~rows()[:7:2] | toList() # returns ['1', '3', '5', '7', '8', '9'] "0123456789" | rows()[:-4] | toList() # returns ['0', '1', '2', '3', '4', '5'] "0123456789" | ~rows()[:-4] | toList() # returns ['6', '7', '8', '9']
-
-
class
k1lib.cli.filt.
intersection
[source]¶ Bases:
k1lib.cli.init.BaseCli
-
class
k1lib.cli.filt.
union
[source]¶ Bases:
k1lib.cli.init.BaseCli
-
class
k1lib.cli.filt.
unique
(column: int)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(column: int)[source]¶ Filters out non-unique row elements. Example:
# returns [[1, "a"], [2, "a"]] [[1, "a"], [2, "a"], [1, "b"]] | unique(0) | deref()
- Parameters
column – doesn’t have the default case of None, because you can always use
k1lib.cli.conv.toSet
-
-
class
k1lib.cli.filt.
breakIf
(f)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
class
k1lib.cli.filt.
mask
(mask: Iterator[bool])[source]¶ Bases:
k1lib.cli.init.BaseCli
gb module¶
All tools related to GenBank file format. Expected to use behind the “gb” module name, like this:
from k1lib.imports import *
cat("abc.gb") | gb.feats()
-
class
k1lib.cli.gb.
feats
(fs: list = [])[source]¶ Bases:
k1lib.cli.init.BaseCli
Fetches features, each on a separate stream. Example:
cat("a.gb") | gb.feats()
Output example:
[[' source 1..248956422', ' /organism="Homo sapiens"', ' /mol_type="genomic DNA"', ' /db_xref="taxon:9606"', ' /chromosome="1"'], [' gene 11874..14409', ' /gene="DDX11L1"', ' /note="DEAD/H-box helicase 11 like 1 (pseudogene); Derived', ' by automated computational analysis using gene prediction', ' method: BestRefSeq."', ' /pseudo', ' /db_xref="GeneID:100287102"', ' /db_xref="HGNC:HGNC:37102"']]
-
static
filt
(*terms: str) → k1lib.cli.init.BaseCli[source]¶ Filters for specific terms in all the features texts. If there are multiple terms, then filters for first term, then second, then third, so the term’s order might matter to you. Example:
[[' source 1..248956422', ' /organism="Homo sapiens"', ' /mol_type="genomic DNA"', ' /db_xref="taxon:9606"', ' /chromosome="1"'], [' gene 11874..14409', ' /gene="DDX11L1"', ' /note="DEAD/H-box helicase 11 like 1 (pseudogene); Derived', ' by automated computational analysis using gene prediction', ' method: BestRefSeq."', ' /pseudo', ' /db_xref="GeneID:100287102"', ' /db_xref="HGNC:HGNC:37102"']] | gb.feats.filt("mol_type")
Output:
[[' source 1..248956422', ' /organism="Homo sapiens"', ' /mol_type="genomic DNA"', ' /db_xref="taxon:9606"', ' /chromosome="1"']]
-
static
root
() → k1lib.cli.init.BaseCli[source]¶ Gets root (top most unnamed tag) of a feature. Example:
[' misc_RNA complement(join(14362..14829,14970..15038,15796..15947,', ' 16607..16765,16858..17055,17233..17368,17606..17742,', ' 17915..18061,18268..18366,24738..24891,29321..29370))', ' /gene="WASH7P"', ' /gene_synonym="FAM39F; WASH5P"', ' /product="WASP family homolog 7, pseudogene"', ' /note="Derived by automated computational analysis using', ' gene prediction method: BestRefSeq."', ' /pseudo', ' /transcript_id="NR_024540.1"', ' /db_xref="GeneID:653635"', ' /db_xref="HGNC:HGNC:38034"'] | feats.root()
Output:
['misc_RNA', ['complement(join(14362..14829,14970..15038,15796..15947,', '16607..16765,16858..17055,17233..17368,17606..17742,', '17915..18061,18268..18366,24738..24891,29321..29370))']]
Grabs a list of tags. Example:
s = [' misc_RNA complement(join(14362..14829,14970..15038,15796..15947,', ' 16607..16765,16858..17055,17233..17368,17606..17742,', ' 17915..18061,18268..18366,24738..24891,29321..29370))', ' /gene="WASH7P"', ' /gene_synonym="FAM39F; WASH5P"', ' /product="WASP family homolog 7, pseudogene"', ' /note="Derived by automated computational analysis using', ' gene prediction method: BestRefSeq."', ' /pseudo', ' /transcript_id="NR_024540.1"', ' /db_xref="GeneID:653635"', ' /db_xref="HGNC:HGNC:38034"'] s | feats.tags()
Output:
[['gene', 'WASH7P'], ['gene_synonym', 'FAM39F; WASH5P'], ['product', 'WASP family homolog 7, pseudogene'], ['note', 'Derived by automated computational analysis using gene prediction method: BestRefSeq.'], ['pseudo', ''], ['transcript_id', 'NR_024540.1'], ['db_xref', 'GeneID:653635'], ['db_xref', 'HGNC:HGNC:38034']]
With filters:
# returns [['gene', 'WASH7P'], ['db_xref', 'HGNC:HGNC:38034'], ['organism', '']] s | feats.tags("gene", "db_xref", "organism")
-
static
grep module¶
-
class
k1lib.cli.grep.
grep
(pattern: Union[str, Callable[[Any], bool]], before: int = 0, after: int = 0, N: int = inf, sep: bool = False, col: Optional[int] = None)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(pattern: Union[str, Callable[[Any], bool]], before: int = 0, after: int = 0, N: int = inf, sep: bool = False, col: Optional[int] = None)[source]¶ Find lines that has the specified pattern. Example:
# returns ['d', 'd'] "abcde12d34" | grep("d") | deref() # returns ['c', 'd', '2', 'd'], 2 sections of ['c', 'd'] and ['2', 'd'] "abcde12d34" | grep("d", 1) | deref() # returns ['c', 'd'] "abcde12d34" | grep("d", 1, N=1) | deref() # returns ['d', 'e', 'd', '3', '4'], 2 sections of ['d', 'e'] and ['d', '3', '4'] "abcde12d34" | grep("d", 0, 3).till("e") | deref() # returns [['0', '1', '2'], ['3', '1', '4']] "0123145" | grep("1", 2, 1, sep=True) | deref()
You can also separate out the sections:
# returns [['c', 'd'], ['2', 'd']] "abcde12d34" | grep("d", 1, sep=True) | deref() # returns [['c', 'd']] "abcde12d34" | grep("d", 1, N=1, sep=True) | deref() # returns [['1', '2', '3'], ['1', '4', '5']] "0123145" | grep("1", sep=True).till() | deref()
You can also put in predicates instead of regex patterns:
# returns ['d', 'd'] "abcde12d34" | grep(lambda x: x == "d") | deref() # also returns ['d', 'd'] "abcde12d34" | filt(lambda x: x == "d") | deref() # returns ['d', 'e', 'd', '3', '4'] "abcde12d34" | grep(lambda x: x == "d").till(lambda x: x == "e") | deref()
The first scenario looks like a regular filter function, already implemented by
filt
, butgrep
brings in more clustering features for the price of reduced execution speed. So for simple scenarios it’s advised that you usefilt
.See also:
groupBy
Also, there’s a whole tutorial devoted to just this cli
- Parameters
pattern – regex pattern to search for in a line
before – lines before the hit. Outputs independent lines
after – lines after the hit. Outputs independent lines
N – max sections to output
sep – whether to separate out the sections as lists
col – searches for pattern in a specific column
-
till
(pattern: Optional[Union[str, Callable[[Any], bool]]] = None)[source]¶ Greps until some other pattern appear. Inclusive, so you might want to trim the last line. Example:
# returns ['5', '6', '7', '8'], includes last item range(10) | join("") | grep("5").till("8") | deref() # returns ['d', 'e', 'd', '3', '4'] "abcde12d34" | grep("d").till("e") | deref() # returns ['d', 'e'] "abcde12d34" | grep("d", N=1).till("e") | deref()
If initial pattern and till pattern are the same, then you don’t have use this method at all. Instead, do something like this:
# returns ['1', '2', '3'] "0123145" | grep("1", after=1e9, N=1) | deref()
-
init module¶
-
class
k1lib.cli.init.
BaseCli
(fs: list = [])[source]¶ Bases:
object
A base class for all the cli stuff. You can definitely create new cli tools that have the same feel without extending from this class, but advanced stream operations (like
+
,&
,.all()
,|
) won’t work.At the moment, you don’t have to call super().__init__() and super().__ror__(), as __init__’s only job right now is to solidify any
op
passed to it, and __ror__ does nothing.-
__init__
(fs: list = [])[source]¶ Not expected to be instantiated by the end user.
fs param
Expected to use it like this:
class A(BaseCli): def __init__(self, f): fs = [f]; super().__init__(fs); self.f = fs[0]
Where
f
is some (potentially exotic) function. This will replace f with a “normal” function that’s executable. See source code offilt
for an example of why this is useful. Currently, it will:
-
hint
(_hint: k1lib.cli.typehint.tBase)[source]¶ Specifies output type hint.
-
property
hasHint
¶
-
__and__
(cli: k1lib.cli.init.BaseCli) → k1lib.cli.init.oneToMany[source]¶ Duplicates input stream to multiple joined clis. Example:
# returns [[5], [0, 1, 2, 3, 4]] range(5) | (shape() & iden()) | deref()
Kinda like
apply
. There’re just multiple ways of doing this. This I think, is more intuitive, andapply
is more for lambdas and columns mode. Performances are pretty much identical.
-
__add__
(cli: k1lib.cli.init.BaseCli) → k1lib.cli.init.mtmS[source]¶ Parallel pass multiple streams to multiple clis. Example:
# returns [8, 15] [2, 3] | ((op() * 4) + (op() * 5)) | deref()
-
all
(n: int = 1) → k1lib.cli.init.BaseCli[source]¶ Applies this cli to all incoming streams. Example:
# returns (3,) torch.randn(3, 4) | toMean().all() | shape() # returns (3, 4) torch.randn(3, 4, 5) | toMean().all(2) | shape()
- Parameters
n – how many times should I chain
.all()
?
-
__or__
(cli) → k1lib.cli.init.serial[source]¶ Joins clis end-to-end. Example:
c = apply(op() ** 2) | deref() # returns [0, 1, 4, 9, 16] range(5) | c
-
f
() → k1lib.cli.init.Table[k1lib.cli.init.Table[int]][source]¶ Creates a normal function \(f(x)\) which is equivalent to
x | self
.
-
-
k1lib.cli.init.
yieldT
¶ Object often used as a sentinel, or an identifying token in lots of clis, including that can be yielded in a stream to ignore this stream for the moment in
joinStreamsRandom
,deref
,tCheck
andtOpt
-
k1lib.cli.init.
fastF
(c, x=None)[source]¶ Tries to figure out what’s going on, is it a normal function, or an applyS, or a BaseCli, etc., and return a really fast function for execution. Example:
# both returns 16, fastF returns "lambda x: x**2", so it's really fast fastF(op()**2)(4) fastF(applyS(lambda x: x**2))(4)
At the moment, parameter
x
does nothing, but potentially in the future, you can pass in an example input to the cli, so that this returns an optimized, C compiled version.- Parameters
x – sample data for the cli
-
class
k1lib.cli.init.
serial
(*clis: List[k1lib.cli.init.BaseCli])[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(*clis: List[k1lib.cli.init.BaseCli])[source]¶ Merges clis into 1, feeding end to end. Used in chaining clis together without a prime iterator. Meaning, without this, stuff like this fails to run:
[1, 2] | a() | b() # runs c = a() | b(); [1, 2] | c # doesn't run if this class doesn't exist
-
-
class
k1lib.cli.init.
oneToMany
(*clis: List[k1lib.cli.init.BaseCli])[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(*clis: List[k1lib.cli.init.BaseCli])[source]¶ Duplicates 1 stream into multiple streams, each for a cli in the list. Used in the “a & b” joining operator. See also:
BaseCli.__and__()
-
-
class
k1lib.cli.init.
mtmS
(*clis: List[k1lib.cli.init.BaseCli])[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(*clis: List[k1lib.cli.init.BaseCli])[source]¶ Applies multiple streams to multiple clis independently. Used in the “a + b” joining operator. See also:
BaseCli.__add__()
.Weird name is actually a shorthand for “many to many specific”.
-
static
f
(f, i: int, n: int = 100)[source]¶ Convenience method, so that this:
mtmS(iden(), op()**2, iden(), iden(), iden()) # also the same as this btw: (iden() + op()**2 + iden() + iden() + iden())
is the same as this:
mtmS.f(op()**2, 1, 5)
Example:
# returns [5, 36, 7, 8, 9] range(5, 10) | mtmS.f(op()**2, 1, 5) | deref()
- Parameters
i – where should I put the function?
n – how many clis in total? Defaulted to 100
-
inp module¶
This module for tools that will likely start the processing stream.
-
k1lib.cli.inp.
cat
(fileName: Optional[str] = None, text: bool = True, _all=False)[source]¶ Reads a file line by line. Example:
# display first 10 lines of file cat("file.txt") | headOut() # piping in also works "file.txt" | cat() | headOut() # recommended to insert a `tOpt()` in the middle and `yieldT` in the end, to do lots of optimizations "file.txt" | tOpt() | cat() | headOut() | yieldT # rename file cat("img.png", False) | file("img2.png")
- Parameters
fileName – if None, then return a
BaseCli
that accepts a file name and outputs Iterator[str]text – if True, read text file, else read binary file
_all – if True, read entire file at once, instead of reading line-by-line. Faster, but uses more memory. Only works with text mode, binary mode always read the entire file
-
k1lib.cli.inp.
curl
(url: str) → Iterator[str][source]¶ Gets file from url. File can’t be a binary blob. Example:
# prints out first 10 lines of the website curl("https://k1lib.github.io/") | headOut()
-
k1lib.cli.inp.
wget
(url: str, fileName: Optional[str] = None)[source]¶ Downloads a file. Also returns the file name, in case you want to pipe it to something else.
- Parameters
url – The url of the file
fileName – if None, then tries to infer it from the url
-
k1lib.cli.inp.
ls
(folder: Optional[str] = None)[source]¶ List every file and folder inside the specified folder. Example:
# returns List[str] ls("/home") # same as above "/home" | ls() # only outputs files, not folders ls("/home") | filt(os.path.isfile)
-
class
k1lib.cli.inp.
cmd
(cmd: str, mode: int = 1, text=True, block=False)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(cmd: str, mode: int = 1, text=True, block=False)[source]¶ Runs a command, and returns the output line by line. Can pipe in some inputs. If no inputs then have to pipe in
None
. Example:# return detailed list of files None | cmd("ls -la") # return list of files that ends with "ipynb" None | cmd("ls -la") | cmd('grep ipynb$')
It might be tiresome to pipe in
None
all the time. So, you can use “>” operator to yield values right away:# prints out first 10 lines of list of files cmd("ls -la") > headOut()
If you’re using Jupyter notebook/lab, then if you were to display a
cmd
object, it will print out the outputs. So, a single commandcmd("mkdir")
displayed at the end of a cell is enough to trigger creating the directory.Reminder that “>” operator in here sort of has a different meaning to that of
BaseCli
. So you kinda have to becareful about this:# returns a serial cli, cmd not executed cmd("ls -la") | deref() # executes cmd with no input stream and pipes output to deref cmd("ls -la") > deref() # returns a serial cli cmd("ls -la") > grep("txt") > headOut() # executes pipeline cmd("ls -la") > grep("txt") | headOut()
General advice is, right ater a
cmd
, use “>”, and use “|” everywhere else.Let’s see a few more exotic examples. File
a.sh
:#!/bin/bash echo 1; sleep 0.5 echo This message goes to stderr >&2 echo 2; sleep 0.5 echo $(</dev/stdin) sleep 0.5; echo 3
Examples:
# returns [b'1', b'2', b'45', b'3'] and prints out the error message "45" | cmd("./a.sh", text=False) | deref() # returns [b'This message goes to stderr'] "45" | cmd("./a.sh", mode=2, text=False) | deref() # returns [[b'1', b'2', b'45', b'3'], [b'This message goes to stderr']] "45" | cmd("./a.sh", mode=0, text=False) | deref()
Performance-wise, stdout and stderr will yield values right away as soon as the process outputs it, so you get real time feedback. However, this will convert the entire input into a
bytes
object, and not feed it bit by bit lazily, so if you have a humongous input, it might slow you down a little.Also, because stdout and stderr yield values right away, it means that if you want the operation to be blocking until finished, you have to consume the output:
None | cmd("mkdir abc") # might fail, because this might get executed before the previous line None | cmd("echo a>abc/rg.txt") None | cmd("mkdir abc") | ignore() # will succeed, because this will be guaranteed to execute after the previous line None | cmd("echo a>abc/rg.txt")
Settings: - cli.quiet: if True, won’t display errors in mode 1
-
kcsv module¶
All tools related to csv file format. Expected to use behind the “kcsv” module name, like this:
from k1lib.imports import *
kcsv.cat("file.csv") | display()
kxml module¶
All tools related to xml file format. Expected to use behind the “kxml” module name, like this:
from k1lib.imports import *
cat("abc.xml") | kxml.node() | kxml.display()
-
class
k1lib.cli.kxml.
node
(fs: list = [])[source]¶ Bases:
k1lib.cli.init.BaseCli
Turns lines into a single node. Example:
s = """ <html> <head> <style></style> </head> <body> <div></div> </body> </html>""" # returns root node s | kxml.node() # same thing as above, demonstrating you can pipe in list of strings s.split("\n") | kxml.node()
-
__ror__
(it: Iterator[str]) → xml.etree.ElementTree.Element[source]¶
-
-
class
k1lib.cli.kxml.
maxDepth
(depth: Optional[int] = None, copy: bool = True)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(depth: Optional[int] = None, copy: bool = True)[source]¶ Filters out too deep nodes. Example:
# returns root node, but prunes children deeper than the specified depth s | kxml.node() | kxml.maxDepth()
- Parameters
depth – max depth to include in
copy – whether to limit the nodes itself, or limit a copy
-
__ror__
(node: xml.etree.ElementTree.Element) → xml.etree.ElementTree.Element[source]¶
-
Bases:
k1lib.cli.init.BaseCli
Finds all tags that have a particular name.. Example:
s = """ <EXPERIMENT_PACKAGE_SET> <EXPERIMENT_PACKAGE> <EXPERIMENT_PACKAGE/> <Pool/> <RUN_SET/> </EXPERIMENT_PACKAGE> <EXPERIMENT_PACKAGE> <Pool/> <RUN_SET/> </EXPERIMENT_PACKAGE> </EXPERIMENT_PACKAGE_SET>""" # returns a list of "Pool" tags (with 2 elements) that are 2 levels deep s | kxml.node() | kxml.tags("Pool") | toList() # returns list with 2 tags s | kxml.node() | kxml.tags("EXPERIMENT_PACKAGE") # returns list with 3 tags s | kxml.node() | kxml.tags("EXPERIMENT_PACKAGE", nested=True)
- Parameters
nested – whether to search for “div” tag inside of another “div” tag
-
class
k1lib.cli.kxml.
pretty
(indent: Optional[str] = None)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(indent: Optional[str] = None)[source]¶ Converts the element into a list of xml strings, and make them pretty. Example:
# prints out the element s | kxml.node() | kxml.pretty() | stdout()
-
__ror__
(it: xml.etree.ElementTree.Element) → Iterator[str][source]¶
-
-
class
k1lib.cli.kxml.
display
(depth: int = 3, lines: int = 20)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(depth: int = 3, lines: int = 20)[source]¶ Convenience method for getting head, make it pretty and print it out. Example:
# prints out the element s | kxml.node() | kxml.display()
- Parameters
depth – prune tags deeper than the specified depth. Put “None” to not prune at all
lines – max number of lines to print out. Put “None” if you want to display everything
-
__ror__
(it: xml.etree.ElementTree.Element, lines=10)[source]¶
-
modifier module¶
This is for quick modifiers, think of them as changing formats
-
class
k1lib.cli.modifier.
applyS
(f: Callable[[T], T], *args, **kwargs)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(f: Callable[[T], T], *args, **kwargs)[source]¶ Like
apply
, but much simpler, just operating on the entire input object, essentially. The “S” stands for “single”. There’s also an alias shorthand for this calledaS
. Example:# returns 5 3 | aS(lambda x: x+2)
Like
apply
, you can also use this as a decorator like this:@aS def f(x): return x+2 # returns 5 3 | f
This also decorates the returned object so that it has same qualname, docstring and whatnot.
- Parameters
f – the function to be executed
kwargs – other keyword arguments to pass to the function, together with
args
-
-
k1lib.cli.modifier.
aS
¶ alias of
k1lib.cli.modifier.applyS
-
class
k1lib.cli.modifier.
apply
(f: Callable[[T], T], column: Optional[int] = None, cache: int = 0)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(f: Callable[[T], T], column: Optional[int] = None, cache: int = 0)[source]¶ Applies a function f to every line. Example:
# returns [0, 1, 4, 9, 16] range(5) | apply(lambda x: x**2) | deref() # returns [[3.0, 1.0, 1.0], [3.0, 1.0, 1.0]] torch.ones(2, 3) | apply(lambda x: x+2, 0) | deref()
You can also use this as a decorator, like this:
@apply def f(x): return x**2 # returns [0, 1, 4, 9, 16] range(5) | f | deref()
You can also add a cache, like this:
def calc(i): time.sleep(0.5); return i**2 # takes 2.5s range(5) | repeatFrom(2) | apply(calc, cache=10) | deref() # takes 5s range(5) | repeatFrom(2) | apply(calc) | deref()
- Parameters
column – if not None, then applies the function to that column only
cache – if specified, then caches this much number of values
-
-
class
k1lib.cli.modifier.
applyMp
(f: Callable[[T], T], prefetch: Optional[int] = None, timeout: float = 8, utilization: float = 0.8, bs: int = 1, **kwargs)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(f: Callable[[T], T], prefetch: Optional[int] = None, timeout: float = 8, utilization: float = 0.8, bs: int = 1, **kwargs)[source]¶ Like
apply
, but executef(row)
of each row in multiple processes. Example:# returns [3, 2] ["abc", "de"] | applyMp(lambda s: len(s)) | deref() # returns [5, 6, 9] range(3) | applyMp(lambda x, bias: x**2+bias, bias=5) | deref() # returns [[1, 2, 3], [1, 2, 3]], demonstrating outside vars work someList = [1, 2, 3] ["abc", "de"] | applyMp(lambda s: someList) | deref()
Internally, this will continuously spawn new jobs up until 80% of all CPU cores are utilized. On posix systems, the default multiprocessing start method is
fork()
. This sort of means that all the variables in memory will be copied over. This might be expensive (might also not, with copy-on-write), so you might have to think about that. On windows and macos, the default start method isspawn
, meaning each child process is a completely new interpreter, so you have to pass in all required variables and reimport every dependencies. Read more at https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methodsIf you don’t wish to schedule all jobs at once, you can specify a
prefetch
amount, and it will only schedule that much jobs ahead of time. Example:range(10000) | applyMp(lambda x: x**2) | head() | deref() # 700ms range(10000) | applyMp(lambda x: x**2, 5) | head() | deref() # 300ms # demonstrating there're no huge penalties even if we want all results at the same time range(10000) | applyMp(lambda x: x**2) | deref() # 900ms range(10000) | applyMp(lambda x: x**2, 5) | deref() # 1000ms
The first line will schedule all jobs at once, and thus will require more RAM and compute power, even though we discard most of the results anyway (the
head
cli). The second line only schedules 5 jobs ahead of time, and thus will be extremely more efficient if you don’t need all results right away.Note
Remember that every
BaseCli
is also a function, meaning that you can do stuff like:# returns [['ab', 'ac']] [["ab", "cd", "ac"]] | applyMp(filt(op().startswith("a")) | deref()) | deref()
Also remember that the return result of
f
should be serializable, meaning it should not be a generator. That’s why in the example above, there’s aderef()
inside f. You should also convert PyTorch tensors into Numpy arraysMost of the time, you would probably want to specify
bs
to something bigger than 1 (may be 32 or sth like that). This will executesf
multiple times in a single job, instead of executingf
only once per job. Should reduce overhead of process creation dramatically.If you encounter strange errors not seen on
apply
, you can try to clear all pools (usingclearPools()
), to terminate all child processes and thus free resources. On earlier versions, you have to do this manually before exiting, but nowapplyMp
is much more robust.Also, you should not immediately assume that
applyMp
will always be faster thanapply
. Remember thatapplyMp
will create new processes, serialize and transfer data to them, execute it, then transfer data back. If your code transfers a lot of data back and forth (compared to the amount of computation done), or the child processes don’t have a lot of stuff to do before returning, it may very well be a lot slower thanapply
.There’s a potential loophole here that can make your code faster. Because the main process is forked (at least on linux), every variable is still there, even the big ones. So, you can potentially do something like this:
bigData = [] # 1B items in the list # summing up all items together. No input data transfers (because it's forked instead) range(1_000_000_000) | batched(100) | applyMp(lambda r: r | apply(lambda i: bigData[i]) | toSum()) | toSum()
- Parameters
prefetch – if not specified, schedules all jobs at the same time. If specified, schedules jobs so that there’ll only be a specified amount of jobs, and will only schedule more if results are actually being used.
timeout – seconds to wait for job before raising an error
utilization – how many percent cores are we running? 0 for no cores, 1 for all the cores. Defaulted to 0.8
bs – if specified, groups
bs
number of transforms into 1 job to be more efficient.kwargs – extra arguments to be passed to the function.
args
not included as there’re a couple of options you can pass for this cli.
-
-
k1lib.cli.modifier.
parallel
¶ alias of
k1lib.cli.modifier.applyMp
-
class
k1lib.cli.modifier.
applyTh
(f, prefetch: int = 2, timeout: float = 5, bs: int = 1)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(f, prefetch: int = 2, timeout: float = 5, bs: int = 1)[source]¶ Kinda like the same as
applyMp
, but executesf
on multiple threads, instead of on multiple processes. Advantages:Relatively low overhead for thread creation
Fast, if
f
is io-boundDoes not have to serialize and deserialize the result, meaning iterators can be exchanged
Disadvantages:
Still has thread creation overhead, so it’s still recommended to specify
bs
Is slow if
f
has to obtain the GIL to be able to do anything
All examples from
applyMp
should work perfectly here.
-
-
class
k1lib.cli.modifier.
applySerial
(f, includeFirst=False)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(f, includeFirst=False)[source]¶ Applies a function repeatedly. First yields input iterator
x
. Then yieldsf(x)
, thenf(f(x))
, thenf(f(f(x)))
and so on. Example:# returns [4, 8, 16, 32, 64] 2 | applySerial(op()*2) | head(5) | deref()
If the result of your operation is an iterator, you might want to
deref
it, like this:rs = iter(range(8)) | applySerial(rows()[::2]) # returns [0, 2, 4, 6] next(rs) | deref() # returns []. This is because all the elements are taken by the previous deref() next(rs) | deref() # returns [[10, -6], [4, 16], [20, -12]] [2, 8] | ~applySerial(lambda a, b: (a + b, a - b)) | head(3) | deref() rs = iter(range(8)) | applySerial(rows()[::2] | deref()) # returns [0, 2, 4, 6] next(rs) # returns [0, 4] next(rs) # returns [0] next(rs)
- Parameters
f – function to apply repeatedly
includeFirst – whether to include the raw input value or not
-
-
class
k1lib.cli.modifier.
sort
(column: int = 0, numeric=True, reverse=False)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(column: int = 0, numeric=True, reverse=False)[source]¶ Sorts all lines based on a specific column. Example:
# returns [[5, 'a'], [1, 'b']] [[1, "b"], [5, "a"]] | ~sort(0) | deref() # returns [[2, 3]] [[1, "b"], [5, "a"], [2, 3]] | ~sort(1) | deref() # errors out, as you can't really compare str with int [[1, "b"], [2, 3], [5, "a"]] | sort(1, False) | deref() # returns [-1, 2, 3, 5, 8] [2, 5, 3, -1, 8] | sort(None) | deref()
- Parameters
column – if None, sort rows based on themselves and not an element
numeric – whether to convert column to float
reverse – False for smaller to bigger, True for bigger to smaller. Use
__invert__()
to quickly reverse the order instead of using this param
-
-
class
k1lib.cli.modifier.
sortF
(f: Callable[[T], float], column: Optional[int] = None, reverse=False)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(f: Callable[[T], float], column: Optional[int] = None, reverse=False)[source]¶ Sorts rows using a function. Example:
# returns ['a', 'aa', 'aaa', 'aaaa', 'aaaaa'] ["a", "aaa", "aaaaa", "aa", "aaaa"] | sortF(lambda r: len(r)) | deref() # returns ['aaaaa', 'aaaa', 'aaa', 'aa', 'a'] ["a", "aaa", "aaaaa", "aa", "aaaa"] | ~sortF(lambda r: len(r)) | deref()
-
__invert__
() → k1lib.cli.modifier.sortF[source]¶
-
-
class
k1lib.cli.modifier.
consume
(f: Union[k1lib.cli.init.BaseCli, Callable[[T], None]])[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(f: Union[k1lib.cli.init.BaseCli, Callable[[T], None]])[source]¶ Consumes the iterator in a side stream. Returns the iterator. Kinda like the bash command
tee
. Example:# prints "0\n1\n2" and returns [0, 1, 2] range(3) | consume(headOut()) | toList() # prints "range(0, 3)" and returns [0, 1, 2] range(3) | consume(lambda it: print(it)) | toList()
This is useful whenever you want to mutate something, but don’t want to include the function result into the main stream.
See also:
tee
-
-
class
k1lib.cli.modifier.
randomize
(bs=100, seed=None)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(bs=100, seed=None)[source]¶ Randomize input stream. In order to be efficient, this does not convert the input iterator to a giant list and yield random values from that. Instead, this fetches
bs
items at a time, randomizes them, returns and fetch anotherbs
items. If you want to do the giant list, then just pass infloat("inf")
, orNone
. Example:# returns [0, 1, 2, 3, 4], effectively no randomize at all range(5) | randomize(1) | deref() # returns something like this: [1, 0, 2, 3, 5, 4, 6, 8, 7, 9]. You can clearly see the batches range(10) | randomize(3) | deref() # returns something like this: [7, 0, 5, 2, 4, 9, 6, 3, 1, 8] range(10) | randomize(float("inf")) | deref() # same as above range(10) | randomize(None) | deref() # returns True, as the seed is the same range(10) | randomize(seed=4) | deref() == range(10) | randomize(seed=4) | deref()
-
-
class
k1lib.cli.modifier.
stagger
(every: int)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(every: int)[source]¶ Staggers input stream into multiple stream “windows” placed serially. Best explained with an example:
o = range(10) | stagger(3) o | deref() # returns [0, 1, 2], 1st "window" o | deref() # returns [3, 4, 5], 2nd "window" o | deref() # returns [6, 7, 8] o | deref() # returns [9] o | deref() # returns []
This might be useful when you’re constructing a data loader:
dataset = [range(20), range(30, 50)] | transpose() dl = dataset | batched(3) | (transpose() | toTensor()).all() | stagger(4) for epoch in range(3): for xb, yb in dl: # looping over a window print(epoch) # then something like: model(xb)
The above code will print 6 lines. 4 of them is “0” (because we stagger every 4 batches), and xb’s shape’ will be (3,) (because we batched every 3 samples).
You should also keep in mind that this doesn’t really change the property of the stream itself. Essentially, treat these pairs of statement as being the same thing:
o = range(11, 100) # both returns 11 o | stagger(20) | item() o | item() # both returns [11, 12, ..., 20] o | head(10) | deref() o | stagger(20) | head(10) | deref()
Lastly, multiple iterators might be getting values from the same stream window, meaning:
o = range(11, 100) | stagger(10) it1 = iter(o); it2 = iter(o) next(it1) # returns 11 next(it2) # returns 12
This may or may not be desirable. Also this should be obvious, but I want to mention this in case it’s not clear to you.
-
-
class
k1lib.cli.modifier.
op
[source]¶ Bases:
k1lib._baseClasses.Absorber
,k1lib.cli.init.BaseCli
-
__init__
()[source]¶ Absorbs operations done on it and applies it on the stream. Based on
Absorber
. Example:t = torch.tensor([[1, 2, 3], [4, 5, 6.0]]) # returns [torch.tensor([[4., 5., 6., 7., 8., 9.]])] [t] | (op() + 3).view(1, -1).all() | deref()
Basically, you can treat
op()
as the input tensor. Tbh, you can do the same thing with this:[t] | applyS(lambda t: (t+3).view(-1, 1)).all() | deref()
But that’s kinda long and may not be obvious. This can be surprisingly resilient, as you can still combine with other cli tools as usual, for example:
# returns [2, 3], demonstrating "&" operator torch.randn(2, 3) | (op().shape & iden()) | deref() | item() a = torch.tensor([[1, 2, 3], [7, 8, 9]]) # returns torch.tensor([4, 5, 6]), demonstrating "+" operator for clis and not clis (a | op() + 3 + iden() | item() == torch.tensor([4, 5, 6])).all() # returns [[3], [3]], demonstrating .all() and "|" serial chaining torch.randn(2, 3) | (op().shape.all() | deref()) # returns [[8, 18], [9, 19]], demonstrating you can treat `op()` as a regular function [range(10), range(10, 20)] | transpose() | filt(op() > 7, 0) | deref() # returns [3, 4, 5, 6, 7, 8, 9], demonstrating bounds comparison range(100) | filt(3 <= op() < 10) | deref()
This can only deal with simple operations only. For complex operations, resort to the longer version
applyS(lambda x: ...)
instead!There are also operations that are difficult to achieve, like
len(op())
, as Python is expecting an integer output, soop()
can’t exactly take over. Instead, you have to useapplyS
, or doop().ab_len()
. Get a list of all of these special operations in the source ofAbsorber
.Performance-wise, in most cases, there are no degradation, so don’t worry about it. Everything is pretty much on par with native lambdas:
n = 10_000_000 # takes 1.48s for i in range(n): i**2 # takes 1.89s, 1.28x worse than for loop range(n) | apply(lambda x: x**2) | ignore() # takes 1.86s, 1.26x worse than for loop range(n) | apply(op()**2) | ignore() # takes 1.86s range(n) | (op()**2).all() | ignore()
More complex operations still retains the same speeds, as there’s a JIT compiler embedded in:
# takes 2.15s for i in range(n): (i**2-3)*0.1 # takes 2.53s, 1.18x worse than for loop range(n) | apply(lambda x: (x**2-3)*0.1) | ignore() # takes 2.46s, 1.14x worse than for loop range(n) | apply((op()**2-3)*0.1) | ignore()
Reserved operations that are not absorbed are:
all
__ror__ (__or__ still works!)
ab_solidify
op_hint
-
-
class
k1lib.cli.modifier.
integrate
(dt=1)[source]¶ Bases:
k1lib.cli.init.BaseCli
nb module¶
This is for everything related to ipython notebooks. Expected to use behind the “nb” module name, like this:
from k1lib.imports import *
nb.execute("file.ipynb")
-
k1lib.cli.nb.
cells
(fileName, outputs=False)[source]¶ Gets simplified notebook cells from file source, including fields
cell_type
andsource
only. Example:nb.cells("file.ipynb")
-
class
k1lib.cli.nb.
pretty
(magics: bool = False, whitelist: List[str] = [], blacklist: List[str] = [])[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(magics: bool = False, whitelist: List[str] = [], blacklist: List[str] = [])[source]¶ Makes the cells prettier. Cell 1 in file.ipynb:
#notest, export a = 3
Cell 2 in file.ipynb:
b = 6
Code:
# only cell 2 gets chosen nb.cells("file.ipynb") | nb.pretty(blacklist=["notest"]) # only cell 1 gets chosen nb.cells("file.ipynb") | nb.pretty(whitelist=["export"])
- Parameters
magics – if False, then if detected magics (‘!’, ‘%%’ symbols), then remove that line in cell’s source
whitelist – every cell that doesn’t have any of these properties will be filtered out
blacklist – every cell that has any of these properties will be filtered out
-
-
class
k1lib.cli.nb.
execute
(fileName=None, _globals: Optional[dict] = None)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(fileName=None, _globals: Optional[dict] = None)[source]¶ Executes cells. Example:
nb.cells("file.ipynb") | nb.execute("nb.ipynb")
Most of the time, you’d want to pass cells through
pretty
first, to make sure everything is nice and clean- Parameters
fileName – not actually used to read the file. If specified, then changes the current working directory to that of the file
_globals – optional dict of global variables
-
output module¶
For operations that feel like the termination
-
class
k1lib.cli.output.
stdout
[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
()[source]¶ Prints out all lines. If not iterable, then print out the input raw. Example:
# prints out "0\n1\n2" range(3) | stdout() # same as above, but (maybe?) more familiar range(3) > stdout()
This is rarely used alone. It’s more common to use
headOut()
for list of items, anddisplay()
for tables.
-
-
class
k1lib.cli.output.
tee
(f=<function <lambda>>, s=None, every=1)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(f=<function <lambda>>, s=None, every=1)[source]¶ Like the Linux
tee
command, this prints the elements to another specified stream, while yielding the elements. Example:# prints "0\n1\n2\n3\n4\n" and returns [0, 1, 4, 9, 16] range(5) | tee() | apply(op() ** 2) | deref()
See also:
consume
- Parameters
f – element transform function. Defaults to just adding a new line at the end
s – stream to write to. Defaults to
sys.stdout
every – only prints out 1 line in
every
lines, to limit print rate
-
-
class
k1lib.cli.output.
file
(fileName: Optional[str] = None)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(fileName: Optional[str] = None)[source]¶ Opens a new file for writing. This will iterate through the iterator fed to it and put each element on a separate line. Example:
# writes "0\n1\n2\n" to file range(3) | file("test/f.txt") # same as above, but (maybe?) more familiar range(3) > file("text/f.txt") # returns ['0', '1', '2'] cat("folder/f.txt") | deref()
If the input is a string, then it will just put the string into the file and does not iterate through the string:
# writes "some text\n123" to file, default iterator mode like above ["some text", "123"] | file("test/f.txt") # same as above, but this is a special case when it detects you're piping in a string "some text\n123" | file("test/f.txt")
If the input is a
bytes
object, then it will open the file in binary mode and dumps the bytes in:# writes bytes to file b'5643' | file("test/a.bin") # returns ['5643'] cat("test/a.bin") | deref()
You can create temporary files on the fly by not specifying a file name:
# creates temporary file url = range(3) > file() # returns ['0', '1', '2'] cat(url) | deref()
This can be especially useful when integrating with shell scripts that wants to read in a file:
seq1 = "CCAAACCCCCCCTCCCCCGCTTC" seq2 = "CCAAACCCCCCCCTCCCCCCGCTTC" # use "needle" program to locally align 2 sequences None | cmd(f"needle {seq1 > file()} {seq2 > file()} -filter")
You can also append to file with the “>>” operator:
url = range(3) > file() # appended to file range(10, 13) >> file(url) # returns ['0', '1', '2', '10', '11', '12'] cat(url) | deref()
- Parameters
fileName – if not specified, create new temporary file and returns the url when pipes into it
-
-
class
k1lib.cli.output.
pretty
(delim='')[source]¶ Bases:
k1lib.cli.init.BaseCli
-
k1lib.cli.output.
display
(lines: int = 10)[source]¶ Convenience method for displaying a table. Pretty much equivalent to
head() | pretty() | stdout()
.See also:
pretty
-
class
k1lib.cli.output.
intercept
(raiseError: bool = True)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
class
k1lib.cli.output.
split
(n=10, baseFolder='/tmp')[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(n=10, baseFolder='/tmp')[source]¶ Splits a large file into multiple fragments, and returns the path to those files. Example:
# returns a list of 20 files "big-file.csv" | split(20)
This uses the underlying
split
linux cli tool. This also means that it’s not guaranteed to work on macos or windows.Overtime, there will be lots of split files after a session, so be sure to clean them up to reduce disk size:
split.clear()
- Parameters
n – Number of files to split into
baseFolder – Base folder where all the splitted files are
-
sam module¶
This is for functions that are .sam or .bam related
-
k1lib.cli.sam.
cat
(bamFile: Optional[str] = None, header: bool = True)[source]¶ Get sam file outputs from bam file. Example:
sam.cat("file.bam") | display() "file.bam" | sam.cat(header=False) | display()
- Parameters
header – whether to include headers or not
-
class
k1lib.cli.sam.
header
(long=True)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
class
k1lib.cli.sam.
flag
(f=None)[source]¶ Bases:
k1lib.cli.utils.bindec
-
__init__
(f=None)[source]¶ Decodes flags attribute. Example:
# returns ['PAIRED', 'UNMAP'] 5 | flag() # returns 'PAIRED, UNMAP' 5 | flag(cli.join(", "))
You’ll mostly use this in this format:
sam.cat("file.bam", False) | apply(sam.flag(), 1) | display()
You can change the flag labels like this:
settings.cli.sam.flags = ["paired", ...]
- Parameters
f – transform function fed into
bindec
, defaulted to join(“, “)
-
structural module¶
This is for functions that sort of changes the table structure in a dramatic way. They’re the core transformations
-
class
k1lib.cli.structural.
joinStreamsRandom
[source]¶ -
__init__
()[source]¶ Join multiple streams randomly. If any streams runs out, then quits. If any stream yields
yieldT
, then just ignores that result and continue. Could be useful in active learning. Example:# could return [0, 1, 10, 2, 11, 12, 13, ...], with max length 20, typical length 18 [range(0, 10), range(10, 20)] | joinStreamsRandom() | deref() stream2 = [[-5, yieldT, -4, -3], yieldT | repeat()] | joinStreams() # could return [-5, -4, 0, -3, 1, 2, 3, 4, 5, 6], demonstrating yieldT [range(7), stream2] | joinStreamsRandom() | deref()
-
-
class
k1lib.cli.structural.
transpose
(dim1: int = 0, dim2: int = 1, fill=None)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(dim1: int = 0, dim2: int = 1, fill=None)[source]¶ Join multiple columns and loop through all rows. Aka transpose. Example:
# returns [[1, 4], [2, 5], [3, 6]] [[1, 2, 3], [4, 5, 6]] | transpose() | deref() # returns [[1, 4], [2, 5], [3, 6], [0, 7]] [[1, 2, 3], [4, 5, 6, 7]] | transpose(fill=0) | deref()
Multidimensional transpose works just like
torch.transpose()
too:# returns (2, 7, 5, 3), but detected Tensor, so it will use builtin :meth:`torch.transpose` torch.randn(2, 3, 5, 7) | transpose(3, 1) | shape() # also returns (2, 7, 5, 3), but actually does every required computation. Can be slow if shape is huge torch.randn(2, 3, 5, 7) | deref(igT=False) | transpose(3, 1) | shape()
Can also work with numpy arrays:
# returns (5, 3, 2) np.random.randn(2, 3, 5) | transpose(0, 2) | op().shape
Be careful with infinite streams, as transposing stream of shape (inf, 5) will hang this operation! Either don’t do it, or temporarily limit all infinite streams like this:
with settings.cli.context(inf=21): # returns (3, 21) [2, 1, 3] | repeat() | transpose() | shape()
Also be careful with empty streams, as you might not get any results at all:
# returns [], as the last stream has no elements [[1, 2], [3, 4], []] | transpose() | deref() # returns [[1, 3, 0], [2, 4, 0]] [[1, 2], [3, 4], []] | transpose(fill=0) | deref()
- Parameters
fill – if not None, then will try to zip longest with this fill value
-
static
fill
(fill='', dim1: int = 0, dim2: int = 1)[source]¶ Convenience method to fill in missing elements of a table. Example:
# returns [[1, 2, 3], [4, 5, 0]] [[1, 2, 3], [4, 5]] | transpose.fill(0) | deref() # also returns [[1, 2, 3], [4, 5, 0]], demonstrating how it works underneath [[1, 2, 3], [4, 5]] | transpose(fill=0) | transpose(fill=0) | deref()
-
static
wrap
(f, dim1: int = 0, dim2: int = 1, fill=None)[source]¶ Wraps
f
around 2transpose
, can be useful in combination withk1lib.cli.init.mtmS
. Example:# returns [[1, 4, 3, 4], [8, 81, 10, 11]] [range(1, 5), range(8, 12)] | transpose.wrap(mtmS.f(apply(op()**2), 1)) | deref() # also returns [[1, 4, 3, 4], [8, 81, 10, 11]], demonstrating the typical way to do this [range(1, 5), range(8, 12)] | apply(op()**2, 1) | deref()
The example given is sort of to demonstrate this only. Most of the time, just use
apply
with columns instead. But sometimes you need direct access to a column, so this is how you can do it.
-
-
class
k1lib.cli.structural.
reshape
(*dims)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(*dims)[source]¶ Reshapes the input stream into the desired shape. Example:
# returns [[0, 1, 2], [3, 4, 5]] range(6) | reshape(2, 3) | deref() # returns [[0, 1], [2, 3], [4, 5]] range(6) | reshape(3, 2) | deref() # returns [[0, 1], [2, 3], [4, 5]], stopped early range(100) | reshape(3, 2) | deref() # returns [[0, 1, 2], [3, 4, 5]], can leave out first dimension range(6) | reshape(-1, 3) | deref() # returns [[0, 1, 2]], won't include 2nd element, as it ran out of elements range(5) | reshape(-1, 3) | deref() # throws error, as it ran out of elements and can't fulfill the request range(6) | reshape(3, 3) | deref()
Unlike
torch.reshape()
, the input piped into this has to be a simple iterator. If you have a complex data structure with multiple dimensions, turn that into a simple iterator withjoinStreams
first, like this:# returns [[[0, 1, 2]], [[3, 4, 5]]] [[[0], [1]], [[2], [3]], [[4], [5]]] | joinStreams(2) | reshape(2, 1, 3) | deref()
-
-
class
k1lib.cli.structural.
insert
(*elements, begin=True)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(*elements, begin=True)[source]¶ Join element into list. Example:
# returns [5, 2, 6, 8] [5, [2, 6, 8]] | insert() | deref() # returns [5, 2, 6, 8] [2, 6, 8] | insert(5) | deref() # returns [2, 6, 8, 5] [2, 6, 8] | insert(5, begin=False) | deref() # returns [[3, 1], 2, 6, 8] [2, 6, 8] | insert([3, 1]) | deref() # returns [[3, 1], 2, 6, 8] [2, 6, 8] | ~insert(3, 1) | deref() # returns [[3, 1], 2, 6, 8] [[3, 1], [2, 6, 8]] | ~insert() | deref()
- Parameters
element – the element to insert. If None, then takes the input [e, […]], else takes the input […] as usual
-
-
class
k1lib.cli.structural.
splitW
(*weights: List[float])[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(*weights: List[float])[source]¶ Splits elements into multiple weighted lists. If no weights are provided, then automatically defaults to [0.8, 0.2]. Example:
# returns [[0, 1, 2, 3, 4, 5, 6, 7], [8, 9]] range(10) | splitW(0.8, 0.2) | deref() # same as the above range(10) | splitW() | deref()
-
-
class
k1lib.cli.structural.
joinStreams
(dims=1)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(dims=1)[source]¶ Joins multiple streams. Example:
# returns [1, 2, 3, 4, 5] [[1, 2, 3], [4, 5]] | joinStreams() | deref() # returns [[0, 1], [2], [3, 4, 5], [6, 7, 8], [], [9, 10]] [[[0, 1], [2], [3, 4, 5]], [[6, 7, 8], [], [9, 10]]] | joinStreams() | deref() # returns [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] [[[0, 1], [2], [3, 4, 5]], [[6, 7, 8], [], [9, 10]]] | joinStreams(2) | deref()
Sometimes, you may want to impose some dimensional structure after joining all streams together, which
reshape
does.
-
-
class
k1lib.cli.structural.
activeSamples
(limit: int = 100, p: float = 0.95)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(limit: int = 100, p: float = 0.95)[source]¶ Yields active learning samples. Example:
o = activeSamples() ds = range(10) # normal dataset ds = [o, ds] | joinStreamsRandom() # dataset with active learning capability next(ds) # returns 0 next(ds) # returns 1 next(ds) # returns 2 o.append(20) next(ds) # can return 3 or 20 next(ds) # can return (4 or 20) or 4
So the point of this is to be a generator of samples. You can define your dataset as a mix of active learning samples and standard samples. Whenever there’s a data point that you want to focus on, you can add it to
o
and it will eventially yield it.Warning
It might not be a good idea to set param
limit
to higher numbers than 100. This is because, the network might still not understand a wrong sample after being shown multiple times, and will keep adding that wrong sample back in, distracting it from other samples, and reduce network’s accuracy after removing active learning from it.If
limit
is low enough (from my testing, 30-100 should be fine), then old wrong samples will be kicked out, allowing for a fresh stream of wrong samples coming in, and preventing the problem above. If you found that removing active learning makes the accuracy drops dramatically, then try decreasing the limit.- Parameters
limit – max number of active samples. Discards samples if number of samples is over this.
p – probability of actually adding the samples in
-
-
k1lib.cli.structural.
table
(delim: Optional[str] = None)[source]¶ Basically
op().split(delim).all()
. This exists because this is used quite a lot in bioinformatics. Example:# returns [['a', 'bd'], ['1', '2', '3']] ["a|bd", "1|2|3"] | table("|") | deref()
-
class
k1lib.cli.structural.
batched
(bs=32, includeLast=False)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(bs=32, includeLast=False)[source]¶ Batches the input stream. Example:
# returns [[0, 1, 2], [3, 4, 5], [6, 7, 8]] range(11) | batched(3) | deref() # returns [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10]] range(11) | batched(3, True) | deref() # returns [[0, 1, 2, 3, 4]] range(5) | batched(float("inf"), True) | deref() # returns [] range(5) | batched(float("inf"), False) | deref()
Can work well and fast with
torch.Tensor
andnumpy.ndarray
:# both returns torch.Tensor of shape (2, 3, 4, 5) torch.randn(6, 4, 5) | batched(3) torch.randn(7, 4, 5) | batched(3)
Also, if input is a
range
, then to save time, a bunch of other ranges will be returned, instead of a bunch of lists, for performance:# returns [range(0, 3), range(3, 6), range(6, 9)] range(11) | batched(3) | toList()
-
-
class
k1lib.cli.structural.
window
(n, newList=False)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(n, newList=False)[source]¶ Slides window of size n forward and yields the windows. Example:
# returns [[0, 1, 2], [1, 2, 3], [2, 3, 4]] range(5) | window(3) | deref()
If you are doing strange transformations to the result, like transposing it, then it might complain that the internal deque (double-ended queue) mutated during iteration. In that case, then set
newList
to True. It’s not True by default because multiple lists will be created, all of which needs memory allocation, which will be slower:# takes 15ms range(100000) | window(100) | ignore() # takes 48ms, because of allocating lists range(100000) | window(100) | ignore()
-
-
class
k1lib.cli.structural.
groupBy
(column: int)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(column: int)[source]¶ Groups table by some column. Example:
[[2.3, 5], [3.4, 2], [4.5, 2], [5.6, 5], [6.7, 1]] | groupBy(1) | deref()
This returns:
[[[2.3, 5], [5.6, 5]], [[3.4, 2], [4.5, 2]], [[6.7, 1]]]
Should have O(n log(n)) time complexity
See also:
grep
- Parameters
column – which column to group by
-
-
class
k1lib.cli.structural.
insertColumn
(column: List[T], begin=True, fill='')[source]¶ Bases:
k1lib.cli.init.BaseCli
-
k1lib.cli.structural.
insertIdColumn
(table=False, begin=True, fill='')[source]¶ Inserts an id column at the beginning (or end). Example:
# returns [[0, 'a', 2], [1, 'b', 4]] [["a", 2], ["b", 4]] | insertIdColumn(True) | deref() # returns [[0, 'a'], [1, 'b']] "ab" | insertIdColumn()
- Parameters
table – if False, then insert column to an Iterator[str], else treat input as a full fledged table
-
class
k1lib.cli.structural.
expandE
(f: Callable[[T], List[T]], column: int)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
k1lib.cli.structural.
unsqueeze
(dim: int = 0)[source]¶ Unsqueeze input iterator. Example:
t = [[1, 2], [3, 4], [5, 6]] # returns (3, 2) t | shape() # returns (1, 3, 2) t | unsqueeze(0) | shape() # returns (3, 1, 2) t | unsqueeze(1) | shape() # returns (3, 2, 1) t | unsqueeze(2) | shape()
Behind the scenes, it’s really just
wrapList().all(dim)
, but the “unsqueeze” name is a lot more familiar. Also note that the inverse operation “squeeze” is sort ofitem().all(dim)
, if you’re sure that this is desirable:t = [[1, 2], [3, 4], [5, 6]] # returns (3, 2) t | unsqueeze(1) | item().all(1) | shape()
-
class
k1lib.cli.structural.
count
[source]¶ Bases:
k1lib.cli.init.BaseCli
-
class
k1lib.cli.structural.
permute
(*permutations: List[int])[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(*permutations: List[int])[source]¶ Permutes the columns. Acts kinda like
torch.Tensor.permute()
. Example:# returns [['b', 'a'], ['d', 'c']] ["ab", "cd"] | permute(1, 0) | deref()
-
-
class
k1lib.cli.structural.
accumulate
(columnIdx: int = 0, avg=False)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(columnIdx: int = 0, avg=False)[source]¶ Groups lines that have the same row[columnIdx], and add together all other columns, assuming they’re numbers. Example:
# returns [['a', 10.5, 9.5, 14.5], ['b', 1.1, 2.2, 3.3]] [["a", 1.1, 2.2, 3.4], ["a", 1.1, 2.2, 7.8], ["a", 8.3, 5.1, 3.3], ["b", 1.1, 2.2, 3.3]] | accumulate(0) | deref()
- Parameters
columnIdx – common column index to accumulate
avg – calculate average values instead of sum
-
-
class
k1lib.cli.structural.
AA_
(*idxs: List[int], wraps=False)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(*idxs: List[int], wraps=False)[source]¶ Returns 2 streams, one that has the selected element, and the other the rest. Example:
# returns [5, [1, 6, 3, 7]] [1, 5, 6, 3, 7] | AA_(1) # returns [[5, [1, 6, 3, 7]]] [1, 5, 6, 3, 7] | AA_(1, wraps=True)
You can also put multiple indexes through:
# returns [[1, [5, 6]], [6, [1, 5]]] [1, 5, 6] | AA_(0, 2)
If you don’t specify anything, then all indexes will be sliced:
# returns [[1, [5, 6]], [5, [1, 6]], [6, [1, 5]]] [1, 5, 6] | AA_()
As for why the strange name, think of this operation as “AĀ”. In statistics, say you have a set “A”, then “not A” is commonly written as A with an overline “Ā”. So “AA_” represents “AĀ”, and that it first returns the selection A.
- Parameters
wraps – if True, then the first example will return [[5, [1, 6, 3, 7]]] instead, so that A has the same signature as Ā
-
-
class
k1lib.cli.structural.
peek
[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
()[source]¶ Returns (firstRow, iterator). This sort of peaks at the first row, to potentially gain some insights about the internal formats. The returned iterator is not tampered. Example:
e, it = iter([[1, 2, 3], [1, 2]]) | peek() print(e) # prints "[1, 2, 3]" s = 0 for e in it: s += len(e) print(s) # prints "5", or length of 2 lists
You kinda have to be careful about handling the
firstRow
, because you might inadvertently alter the iterator:e, it = iter([iter(range(3)), range(4), range(2)]) | peek() e = list(e) # e is [0, 1, 2] list(next(it)) # supposed to be the same as `e`, but is [] instead
The example happens because you have already consumed all elements of the first row, and thus there aren’t any left when you try to call
next(it)
.
-
-
class
k1lib.cli.structural.
peekF
(f: Union[k1lib.cli.init.BaseCli, Callable[[T], T]])[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(f: Union[k1lib.cli.init.BaseCli, Callable[[T], T]])[source]¶ Similar to
peek
, but will executef(row)
and return the input Iterator, which is not tampered. Example:it = lambda: iter([[1, 2, 3], [1, 2]]) # prints "[1, 2, 3]" and returns [[1, 2, 3], [1, 2]] it() | peekF(lambda x: print(x)) | deref() # prints "1\n2\n3" it() | peekF(headOut()) | deref()
-
-
class
k1lib.cli.structural.
repeat
(limit: Optional[int] = None)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(limit: Optional[int] = None)[source]¶ Yields a specified amount of the passed in object. If you intend to pass in an iterator, then make a list out of it first, as second copy of iterator probably won’t work as you will have used it the first time. Example:
# returns [[1, 2, 3], [1, 2, 3], [1, 2, 3]] [1, 2, 3] | repeat(3) | toList()
- Parameters
repeat – if None, then repeats indefinitely
-
-
k1lib.cli.structural.
repeatF
(f, limit: Optional[int] = None, **kwargs)[source]¶ Yields a specified amount generated by a specified function. Example:
# returns [4, 4, 4] repeatF(lambda: 4, 3) | toList() # returns 10 repeatF(lambda: 4) | head() | shape(0) f = lambda a: a+2 # returns [8, 8, 8] repeatF(f, 3, a=6) | toList()
- Parameters
limit – if None, then repeats indefinitely
kwargs – extra keyword arguments that you can pass into the function
See also:
repeatFrom
-
class
k1lib.cli.structural.
repeatFrom
(limit: Optional[int] = None)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(limit: Optional[int] = None)[source]¶ Yields from a list. If runs out of elements, then do it again for
limit
times. Example:# returns [1, 2, 3, 1, 2] [1, 2, 3] | repeatFrom() | head(5) | deref() # returns [1, 2, 3, 1, 2, 3] [1, 2, 3] | repeatFrom(2) | deref()
- Parameters
limit – if None, then repeats indefinitely
-
-
class
k1lib.cli.structural.
oneHot
(col, n: int = 0, group: Optional[str] = None)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(col, n: int = 0, group: Optional[str] = None)[source]¶ One-hot encode some column in a table. Example:
a = [ [1, 2, "A"], [3, 4, "B"], [5, 6, "C"]] b = [ [7, 8, "A"], [9, 10, "B"], [11, 12, "B"]] [*a, *b] | oneHot(2) | deref() [*a, *b] | oneHot(2, 3, "abcd") | deref()
Last 2 statements both return this:
[[1, 2, 1, 0, 0], [3, 4, 0, 1, 0], [5, 6, 0, 0, 1], [7, 8, 1, 0, 0], [9, 10, 0, 1, 0], [11, 12, 0, 1, 0]]
The natural way to do this is to use with without
n
andgroup
parameters. But sometimes, your one hot encoding is spreaded across multiple datasets in multiple dataloaders, and so the order and length of the encoding might not be the same, which will mess up your training process.That’s why, you can specify
group
, which will share encoding information across alloneHot
clis that have the same group name. If you choose to do this then you have to also specify what’s the size of the encoding, because the cli can’t really infer the size when it potentially has not seen all the data right?- Parameters
col – which column one hot encode and expand into
n – (optional) total number of different elements
group – (optional) group name
-
trace module¶
-
class
k1lib.cli.trace.
trace
(f=<k1lib.cli.utils.size object>, maxDepth=inf)[source]¶ Bases:
k1lib.cli.trace._trace
-
last
= None¶ Last instantiated trace object. Access this to view the previous (possibly nested) trace.
-
__init__
(f=<k1lib.cli.utils.size object>, maxDepth=inf)[source]¶ Traces out how the data stream is transformed through complex cli tools. Example:
# returns [1, 4, 9, 16], normal command range(1, 5) | apply(lambda x: x**2) | deref() # traced command, will display how the shapes evolve through cli tools range(1, 5) | trace() | apply(lambda x: x**2) | deref()
There’re a lot more instructions and code examples over the tutorial section. Go check it out!
This also works well with
tOpt
, and will actually display inferred type data in the graph:range(5) | tOpt() | trace() | apply(op()**2)
-
utils module¶
This is for all short and random quality-of-life utilities.
-
class
k1lib.cli.utils.
size
(idx=None)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(idx=None)[source]¶ Returns number of rows and columns in the input. Example:
# returns (3, 2) [[2, 3], [4, 5, 6], [3]] | size() # returns 3 [[2, 3], [4, 5, 6], [3]] | size(0) # returns 2 [[2, 3], [4, 5, 6], [3]] | size(1) # returns (2, 0) [[], [2, 3]] | size() # returns (3,) [2, 3, 5] | size() # returns 3 [2, 3, 5] | size(0) # returns (3, 2, 2) [[[2, 1], [0, 6, 7]], 3, 5] | size() # returns (1, 3) ["abc"] | size() # returns (1, 2, 3) [torch.randn(2, 3)] | size() # returns (2, 3, 5) size()(np.random.randn(2, 3, 5))
There’s also
lengths
, which is sort of a simplified/faster version of this, but only use it if you are sure thatlen(it)
can be called.If encounter PyTorch tensors or Numpy arrays, then this will just get the shape instead of actually looping over them.
- Parameters
idx – if idx is None return (rows, columns). If 0 or 1, then rows or columns
-
-
k1lib.cli.utils.
shape
¶ alias of
k1lib.cli.utils.size
-
class
k1lib.cli.utils.
item
(amt: int = 1, fill=<object object>)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(amt: int = 1, fill=<object object>)[source]¶ Returns the first row. Example:
# returns 0 iter(range(5)) | item() # returns torch.Size([5]) torch.randn(3,4,5) | item(2) | shape() # returns 3 [] | item(fill=3)
- Parameters
amt – how many times do you want to call item() back to back?
fill – if iterator length is 0, return this
-
-
class
k1lib.cli.utils.
iden
[source]¶ Bases:
k1lib.cli.init.BaseCli
-
class
k1lib.cli.utils.
join
(delim: Optional[str] = None)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(delim: Optional[str] = None)[source]¶ Merges all strings into 1, with delim in the middle. Basically
str.join()
. Example:# returns '2\na' [2, "a"] | join("\n")
-
-
class
k1lib.cli.utils.
wrapList
[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
()[source]¶ Wraps inputs inside a list. There’s a more advanced cli tool built from this, which is
unsqueeze()
.
-
-
class
k1lib.cli.utils.
reverse
[source]¶ Bases:
k1lib.cli.init.BaseCli
-
class
k1lib.cli.utils.
ignore
[source]¶ Bases:
k1lib.cli.init.BaseCli
-
class
k1lib.cli.utils.
rateLimit
(f, delay=0.1)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(f, delay=0.1)[source]¶ Limits the execution flow rate upon a condition. Example:
s = 0; semaphore = 0 def heavyAsyncOperation(i): global semaphore, s semaphore += 1 s += i; time.sleep(1) semaphore -= 1; return i**2 # returns (20,), takes 1s to run range(20) | applyTh(heavyAsyncOperation, 100) | shape() # returns (20,), takes 4s to run (20/5 = 4) range(20) | rateLimit(lambda: semaphore < 5) | applyTh(heavyAsyncOperation, 100) | shape()
The first test case is not rate-limited, so it will run all 20 threads at the same time, and all of them will finish after 1 second.
The second test case is rate-limited, so that there can only be 5 concurrently executing threads because of the semaphore count check. Therefore this takes around 4 seconds to run.
- Parameters
f – checking function. Should return true if execution is allowed
delay – delay in seconds between calling
f()
-
-
class
k1lib.cli.utils.
timeLimit
(t)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
k1lib.cli.utils.
tab
(pad: str = ' ')[source]¶ Indents incoming string iterator. Example:
# prints out indented 0 to 9 range(10) | tab() | headOut()
-
k1lib.cli.utils.
indent
(pad: str = ' ')¶ Indents incoming string iterator. Example:
# prints out indented 0 to 9 range(10) | tab() | headOut()
-
class
k1lib.cli.utils.
clipboard
[source]¶ Bases:
k1lib.cli.init.BaseCli
-
class
k1lib.cli.utils.
deref
(maxDepth=inf, igT=True)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(maxDepth=inf, igT=True)[source]¶ Recursively converts any iterator into a list. Example:
# returns something like "<range_iterator at 0x7fa8c52ca870>" iter(range(5)) # returns [0, 1, 2, 3, 4] iter(range(5)) | deref() # returns [2, 3], yieldT stops things early [2, 3, yieldT, 6] | deref()
You can also specify a
maxDepth
:# returns something like "<list_iterator at 0x7f810cf0fdc0>" iter([range(3)]) | deref(0) # returns [range(3)] iter([range(3)]) | deref(1) # returns [[0, 1, 2]] iter([range(3)]) | deref(2)
There are a few classes/types that are considered atomic, and
deref
will never try to iterate over it. If you wish to change it, do something like:settings.cli.atomic.deref = (int, float, ...)
- Parameters
maxDepth – maximum depth to dereference. Starts at 0 for not doing anything at all
igT – short for “ignore tensor”. If True, then don’t loop over
torch.Tensor
andnumpy.ndarray
internals
-
__invert__
() → k1lib.cli.init.BaseCli[source]¶ Returns a
BaseCli
that makes everything an iterator. Not entirely sure when this comes in handy, but it’s there.
-
-
class
k1lib.cli.utils.
bindec
(cats: List[Any], f=None)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(cats: List[Any], f=None)[source]¶ Binary decodes the input. Example:
# returns ['a', 'c'] 5 | bindec("abcdef") # returns 'a,c' 5 | bindec("abcdef", join(","))
- Parameters
cats – categories
f – transformation function of the selected elements. Defaulted to
toList
, but others likejoin
is useful too
-
-
class
k1lib.cli.utils.
smooth
(consecutives=None)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(consecutives=None)[source]¶ Smoothes out the input stream. Literally just a shortcut for:
batched(consecutives) | toMean().all()
Example:
# returns [4.5, 14.5, 24.5] range(30) | smooth(10) | deref()
Smoothing over
torch.Tensor
ornumpy.ndarray
will be much faster, and produce high dimensional results:# returns torch.Tensor with shape (2, 3, 4) torch.randn(10, 3, 4) | smooth(4)
The default consecutive value is in
settings.cli.smooth
. This is useful if you are smoothing over multiple lists at the same time, like this:# can change a single smooth value temporarily here, and all sequences will be smoothed in the same way with settings.cli.context(smooth=5): x = list(np.linspace(-2, 2, 50)) y = x | apply(op()**2) | deref() plt.plot(x | smooth() | deref(), y | smooth() | deref())
- Parameters
consecutives – if not defined, then used the value inside
settings.cli.smooth
-
-
k1lib.cli.utils.
disassemble
(f=None)[source]¶ Disassembles anything piped into it. Normal usage:
def f(a, b): return a**2 + b # both of these print out disassembled info f | disassemble() disassemble(f) # you can pass in lambdas disassemble(lambda x: x + 3) # or even raw code "lambda x: x + 3" | disassemble()
-
k1lib.cli.utils.
tree
(fL=10, dL=10, depth=inf, ff: Callable[[str], bool] = <function <lambda>>, df: Callable[[str], bool] = <function <lambda>>)[source]¶ Recursively gets all files and folders. Output format might be a bit strange, so this is mainly for visualization. Example:
"." | tree() | deref()
- Parameters
fL – max number of file per directory included in output
dL – max number of child directories per directory included in output
depth – explore depth
ff – optional file filter function
df – optional directory filter function
-
class
k1lib.cli.utils.
lookup
(d: dict, col: Optional[int] = None, fill=None)[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
(d: dict, col: Optional[int] = None, fill=None)[source]¶ Looks up items from a dictionary/object. Example:
d = {"a": 3, "b": 5, "c": 52} # returns [3, 5, 52, 52, 3] "abcca" | lookup(d) | deref() # returns [[0, 3], [1, 5], [2, 52], [3, 52], [4, 3]] [range(5), "abcca"] | transpose() | lookup(d, 1) | deref()
- Parameters
d – any object that can be sliced with the inputs
col – if None, lookup on each row, else lookup a specific column only
fill – if None, throws error if looked up element is not available, else returns the fill value
-
typehint module¶
Lots of type hint mechanisms to be used by the LLVM optimizer
-
class
k1lib.cli.typehint.
tBase
(child=<class 'NoneType'>)[source]¶ Bases:
object
-
check
(v)[source]¶ Checks whether a specific object adhears to this type hint or not. Returns
yieldT
if object does not adhere. If it does, then return the object.Note that in the case that the object is actually an iterator, it will return a new iterator containing all elements from the old iterator.
-
item
()[source]¶ Gets the child type of this type. Basically what’s the type if it were to go through
item
. Example:# returns tTensor(torch.float32, 2) tTensor(torch.float32, 3).item()
-
expand
(n) → List[k1lib.cli.typehint.tBase][source]¶ Expands the type to a list with
n
elements. Example:# returns [int, int, int, int] tList(int).expand(4) # returns [int, float, float, str] tCollection(int, tExpand(float), str).expand(4)
-
-
class
k1lib.cli.typehint.
tAny
[source]¶ Bases:
k1lib.cli.typehint.tBase
-
check
(v)[source]¶ Checks whether a specific object adhears to this type hint or not. Returns
yieldT
if object does not adhere. If it does, then return the object.Note that in the case that the object is actually an iterator, it will return a new iterator containing all elements from the old iterator.
-
-
class
k1lib.cli.typehint.
tList
(child=<class 'NoneType'>)[source]¶ Bases:
k1lib.cli.typehint.tBase
-
check
(v)[source]¶ Checks whether a specific object adhears to this type hint or not. Returns
yieldT
if object does not adhere. If it does, then return the object.Note that in the case that the object is actually an iterator, it will return a new iterator containing all elements from the old iterator.
-
-
class
k1lib.cli.typehint.
tIter
(child=<class 'NoneType'>)[source]¶ Bases:
k1lib.cli.typehint.tBase
-
check
(v)[source]¶ Checks whether a specific object adhears to this type hint or not. Returns
yieldT
if object does not adhere. If it does, then return the object.Note that in the case that the object is actually an iterator, it will return a new iterator containing all elements from the old iterator.
-
-
class
k1lib.cli.typehint.
tSet
(child=<class 'NoneType'>)[source]¶ Bases:
k1lib.cli.typehint.tBase
-
check
(v)[source]¶ Checks whether a specific object adhears to this type hint or not. Returns
yieldT
if object does not adhere. If it does, then return the object.Note that in the case that the object is actually an iterator, it will return a new iterator containing all elements from the old iterator.
-
-
class
k1lib.cli.typehint.
tCollection
(*children)[source]¶ Bases:
k1lib.cli.typehint.tBase
-
__init__
(*children)[source]¶ Fixed-length collection of things. Let’s say you want a tuple with 5 values:
a = [3, [2, 3], "e", 2.0, b'3']
Then, this would be represented like this:
tCollection(int, tList(int), str, float, bytes)
This also works in conjunction with
tExpand
, like this:a = [3, [2, 3], "e", 2.0, 3.0] tCollection(int, tList(int), str, tExpand(float))
-
check
(v)[source]¶ Checks whether a specific object adhears to this type hint or not. Returns
yieldT
if object does not adhere. If it does, then return the object.Note that in the case that the object is actually an iterator, it will return a new iterator containing all elements from the old iterator.
-
item
()[source]¶ Gets the child type of this type. Basically what’s the type if it were to go through
item
. Example:# returns tTensor(torch.float32, 2) tTensor(torch.float32, 3).item()
-
expand
(n: int) → List[k1lib.cli.typehint.tBase][source]¶ Expands out this collection so that it has a specified length
-
-
class
k1lib.cli.typehint.
tExpand
(child)[source]¶ Bases:
k1lib.cli.typehint.tBase
-
__init__
(child)[source]¶ Supplement to
tCollection
-
check
(v)[source]¶ Checks whether a specific object adhears to this type hint or not. Returns
yieldT
if object does not adhere. If it does, then return the object.Note that in the case that the object is actually an iterator, it will return a new iterator containing all elements from the old iterator.
-
-
class
k1lib.cli.typehint.
tNpArray
(child=None, rank=None)[source]¶ Bases:
k1lib.cli.typehint.tBase
-
__init__
(child=None, rank=None)[source]¶ Numpy array type. Example:
# returns np.array([2, 3]) tNpArray(np.int64, 1).check(np.array([2, 3]))
- Parameters
child – the dtype of the array
rank – the rank/dimension of the array
-
check
(v)[source]¶ Checks whether a specific object adhears to this type hint or not. Returns
yieldT
if object does not adhere. If it does, then return the object.Note that in the case that the object is actually an iterator, it will return a new iterator containing all elements from the old iterator.
-
-
class
k1lib.cli.typehint.
tTensor
(child=None, rank=None)[source]¶ Bases:
k1lib.cli.typehint.tBase
-
__init__
(child=None, rank=None)[source]¶ PyTorch tensor type. Example:
# returns torch.tensor([2.0, 3.0]) tTensor(torch.float32, 1).check(torch.tensor([2.0, 3.0]))
- Parameters
child – the dtype of the array
rank – the rank/dimension of the tensor
-
check
(v)[source]¶ Checks whether a specific object adhears to this type hint or not. Returns
yieldT
if object does not adhere. If it does, then return the object.Note that in the case that the object is actually an iterator, it will return a new iterator containing all elements from the old iterator.
-
-
k1lib.cli.typehint.
inferType
(o)[source]¶ Tries to infer the type of the input. Example:
# returns tList(int) inferType(range(10)) # returns tTensor(torch.float32, 2) inferType(torch.randn(2, 3))
-
k1lib.cli.typehint.
tLowest
(*ts)[source]¶ Grabs the lowest possible shared type of all the example types. Example:
# returns tIter(float) tLowest(tIter(float), tList(int))
-
class
k1lib.cli.typehint.
tCheck
[source]¶ Bases:
k1lib.cli.init.BaseCli
-
__init__
()[source]¶ Tool similar to
trace
to check whether all type hint outputs of all clis are good or not. Example:assert range(1, 3) | tCheck() | item() | op()*2 == 2
Mainly used in cli unit tests. Return type of statement will be
tCheck
, which might be undesirable, so you can pipe it toyieldT
like this:# returns tCheck object range(1, 3) | tCheck() | item() | op()*2 # returns number "2" range(1, 3) | tCheck() | item() | op()*2 | yieldT
-
-
class
k1lib.cli.typehint.
tOpt
[source]¶ Bases:
k1lib.cli.init.BaseCli
-
n
= 10¶
-
__init__
()[source]¶ Optimizes clis. Let’s say you have something like this:
range(1000) | toList() | head() | deref()
For whatever reason you forgot that you’ve dereferenced everything in the middle, although you’re only using 10 first elements, so the code can’t be lazy anymore. You can apply optimizations to it like this:
range(1000) | tOpt() | toList() | head() | deref()
This will effectively turn it into this:
range(1000) | tOpt() | head() | deref()
Checkout the llvm optimizer tutorial <llvm.html> for a more in-depth explanation of this
More over, this combines nicely with
trace
like this:range(5) | tOpt() | trace() | apply(op()**2) | deref()
-
static
addPass
(p, klasses: List[k1lib.cli.init.BaseCli] = [], abstractness=3)[source]¶ Adds an optimization pass that acts upon multiple clis in series. Example:
# cs: list of clis, ts: list of input type hints, 1 for each cli def o1(cs:List[BaseCli], ts:List[tBase], metadata={}): return [cs[1], cs[0]] # reorder the clis tOpt.addPass(o1, [toList, head], 3)
Here, we’re declaring an optimization pass
o1
. You will be given a list of cli objects, the cli’s input type hints and some extra metadata. If you can optimize it, then you should return a list of new clis, else you should return NoneAlso,
abstractness
has varying number of legal values: - 1-5: generic optimizations - 6-10: analysis passes. Passes must not return anythingHigher abstraction optimizations will be called first, and then lower abstraction optimizations will be called later. So, the idea is, just like LLVM, you can do some analysis which will compute metadata that you can use in your optimization passes, which will return optimized clis if it can.
Within optimization passes, you can prioritize optimizations that look at the global picture first, before breaking the code up into tiny fragments with more detailed optimizations, at which point it’s hard to look at the global picture.
- Parameters
p – the optimization pass
klasses – list of cli classes in series that will trigger the pass
abstractness – how abstract is this optimization
-
property
out
¶
-
property
optCli
¶ Grabs the optimized cli. Example:
# returns optimized cli (range(5) | tOpt() | apply(op()**2) | deref()).optCli # you can also do it like this: range(5) | tOpt() | apply(op()**2) | deref() | tOpt.optCli
-
optimizations module¶
This is for optimizing the hell out of cli tools. Optimizations that focus around a specific cli should be included close to their definitions, so this is for optimizations that unusually span multiple clis, and serve as examples of how to create optimization passes.
See over the LLVM optimizer tutorial for more background.
others module¶
This is for pretty random clis that’s scattered everywhere.
Elsewhere in the library¶
There might still be more cli tools scattered around the library. These are pretty rare, quite dynamic and most likely a cool extra feature, not a core functionality, so not worth it/can’t mention it here. Anyway, execute this:
cli.scatteredClis()
to get a list of them.