Source code for k1lib.callbacks.limits

# AUTOGENERATED FILE! PLEASE DON'T EDIT
from .callbacks import Callback, Callbacks, Cbs
import k1lib, time
__all__ = ["BatchLimit", "EpochLimit", "TimeLimit", "CancelOnExplosion",
           "CancelOnLowLoss", "CancelOnHighAccuracy", "DontTrain",
           "GradientClipping", "GradientClippingNorm"]
[docs]@k1lib.patch(Cbs) class BatchLimit(Callback): """Cancels the epoch after executed certain number of batches""" def __init__(self, limit:int): super().__init__(); self.order = 25 self.limit = limit if limit != None else float("inf") def startEpoch(self): self.currentBatch = 0 def startBatch(self): if self.currentBatch >= self.limit: raise k1lib.CancelEpochException(f"Batch {self.limit} reached") def endBatch(self): self.currentBatch += 1
@k1lib.patch(Callbacks, docs=BatchLimit) def withBatchLimit(self, limit:int, name:str=None): return self.append(BatchLimit(limit), name)
[docs]@k1lib.patch(Cbs) class EpochLimit(Callback): """Cancels the run after executed certain number of epochs""" def __init__(self, limit:int): super().__init__(); self.order = 25 self.limit = limit if limit != None else float("inf") def startRun(self): self.currentEpoch = 0 def startEpoch(self): if self.currentEpoch >= self.limit: raise k1lib.CancelRunException(f"Epoch {self.limit} reached!") def endEpoch(self): self.currentEpoch += 1
@k1lib.patch(Callbacks, docs=EpochLimit) def withEpochLimit(self, limit:int, name:str=None): return self.append(EpochLimit(limit), name)
[docs]@k1lib.patch(Cbs) class TimeLimit(Callback): """Cancels the run after a certain number of seconds have passed""" def __init__(self, seconds=30): super().__init__(); self.seconds = seconds; self.order = 25 def startRun(self): self.startTime = time.time() def startBatch(self): if time.time() - self.startTime > self.seconds: raise k1lib.CancelRunException(f"Takes more than {self.seconds} seconds!")
@k1lib.patch(Callbacks, docs=TimeLimit) def withTimeLimit(self, seconds=30, name:str=None): return self.append(TimeLimit(seconds), name)
[docs]@k1lib.patch(Cbs) class CancelOnExplosion(Callback): """Cancels the run if any of the parameters are larger than a certain limit""" def __init__(self, limit:float=1e6): super().__init__(); self.order = 25 self.limit = limit; self.triggered = False def startRun(self): self.triggered = False def startBatch(self): for p in self.l.model.parameters(): o = p.detach() if o.max().float() > self.limit or o.min().float() < -self.limit: self.triggered = True raise k1lib.CancelRunException("Explosion detected!") def __repr__(self): return f"""{self._reprHead}, use... - cb.triggered: to see if there was an explosion on the last run - cb.progress: to see current progress at explosion time {self._reprCan}"""
@k1lib.patch(Callbacks, docs=CancelOnExplosion) def withCancelOnExplosion(self, limit:float=1e6, name:str=None): return self.append(CancelOnExplosion(limit), name)
[docs]@k1lib.patch(Cbs) class CancelOnLowLoss(Callback): " "
[docs] def __init__(self, loss:float, epochMode:bool=False): """Cancels the run if loss is lower than amount specified. Original class: :class:`~k1lib.callbacks.limits.CancelOnLowLoss` :param epochMode: False if use batch loss, True if use valid epoch loss""" super().__init__(); self.order = 25; self.dependsOn = ["Loss"] self.loss = loss; self.epochMode = epochMode
def startRun(self): if not hasattr(self.l.cbs, "Loss"): raise AttributeError("Learner does not have required `Loss` callback") self.v = self.cbs.Loss.valid; self.ve = self.cbs.Loss.epoch.valid # List[int] def endBatch(self): if self.epochMode: if len(self.ve) > 0 and self.ve[-1] < self.loss: raise k1lib.CancelRunException(f"Low loss {self.loss} ({self.ve[-3:]} actual) achieved!") elif len(self.v) and self.v[-1] < self.loss: raise k1lib.CancelRunException(f"Low loss {self.loss} ({self.v[-3:]} actual) achieved!")
@k1lib.patch(Callbacks, docs=CancelOnLowLoss.__init__) def withCancelOnLowLoss(self, loss:float, epochMode:bool=False, name:str=None): return self.append(CancelOnLowLoss(loss, epochMode), name)
[docs]@k1lib.patch(Cbs) class CancelOnHighAccuracy(Callback): """Cancels the run if accuracy is higher than the amount specified""" def __init__(self, accuracy:float): super().__init__(); self.order = 25 self.accuracy = accuracy; self.dependsOn = ["Accuracy"] def endBatch(self): if not hasattr(self.l, "Accuracy"): raise AttributeError("Learner does not have `Accuracy` callback") a = self.l.Accuracy.valid[-1] if a > self.accuracy: raise k1lib.CancelRunException(f"High accuracy {self.accuracy} ({a} actual) achieved!")
@k1lib.patch(Callbacks, docs=CancelOnHighAccuracy) def withCancelOnHighAccuracy(self, accuracy:float, name:str=None): return self.append(CancelOnHighAccuracy(accuracy), name)
[docs]@k1lib.patch(Cbs) class DontTrain(Callback): """Don't allow the network to train at all""" def startBackward(self): return True def startStep(self): return True
@k1lib.patch(Callbacks, docs=DontTrain) def withDontTrain(self, name:str=None): return self.append(DontTrain(), name) from torch.nn.utils import clip_grad_value_
[docs]@k1lib.patch(Cbs) class GradientClipping(Callback): """Clips gradient to a specific max value""" def __init__(self, value:float): super().__init__(); self.value = value def startStep(self): clip_grad_value_(self.l.model.parameters(), self.value)
@k1lib.patch(Callbacks, docs=GradientClipping) def withGradientClipping(self, value:float, name:str=None): return self.append(GradientClipping(value), name) from torch.nn.utils import clip_grad_norm_
[docs]@k1lib.patch(Cbs) class GradientClippingNorm(Callback): """Clips gradient to a specific max_norm value. Can choose to lump all params together or do each separately. See also: :class:`~k1lib.callbacks.limits.GradientClipping` callback.""" def __init__(self, max_norm:float, each:bool=True): super().__init__(); self.max_norm = max_norm; self.each = each def startStep(self): if self.each: for m in self.l.model.parameters(): clip_grad_norm_(m, self.max_norm) else: clip_grad_norm_(self.l.model.parameters(), self.max_norm)
@k1lib.patch(Callbacks, docs=GradientClippingNorm) def withGradientClippingNorm(self, max_norm:float, each:bool=True, name:str=None): return self.append(GradientClippingNorm(max_norm, each), name)