# AUTOGENERATED FILE! PLEASE DON'T EDIT
from k1lib.callbacks import Callback
import k1lib, torch, math, numpy as np; from functools import partial
import matplotlib.pyplot as plt
def allocated() -> int: return torch.cuda.memory_allocated()
class MemoryData:
def __init__(self, mProfiler, mS:k1lib.selector.ModuleSelector):
self.mProfiler = mProfiler; self.mS = mS
self.handles = k1lib.Object.fromDict({"fp":0,"f":0,"b":0})
self.values = k1lib.Object.fromDict({"fp":0,"f":0,"b":0})
self.hook()
def hook(self):
def hk(v, m, i, o=None):
"""v: type of hook"""
mP = self.mProfiler
value = allocated() - mP.startMemory; self.values[v] += value
if v == "f" or v == "b":
if v == "b" and mP.startBackwardPoint is None:
mP.startBackwardPoint = len(mP.linear)
mP.linear.append(value); mP.linState.append(0)
# have to do this because callback order is pretty chaotic, so this
# is there just to recognize what module belongs to this reading
mP.linSignature.append(self.mS.signature)
self.handles.fp = self.mS.nnModule.register_forward_pre_hook(partial(hk, "fp"))
self.handles.f = self.mS.nnModule.register_forward_hook(partial(hk, "f"))
self.handles.b = self.mS.nnModule.register_full_backward_hook(partial(hk, "b"))
def unhook(self):
self.handles.fp.remove(); self.handles.f.remove(); self.handles.b.remove()
def __getstate__(self):
answer = dict(self.__dict__)
del answer["mS"]; del answer["mProfiler"]; return answer
def __setstate__(self, state): self.__dict__.update(dict(state))
def __str__(self):
fp = f"fp({k1lib.format.size(self.values.fp)})".ljust(14)
f = f"f({k1lib.format.size(self.values.f)})".ljust(13)
b = f"b({k1lib.format.size(self.values.b)})".ljust(13)
delta = f"delta({k1lib.format.size(self.values.f - self.values.fp)})".ljust(17)
return f"{b} {delta} {fp} {f}"
[docs]class MemoryProfiler(Callback):
"""Expected to be run only once only. If a new report for a new network
architecture is required, then create a new one"""
def startRun(self):
if not hasattr(self, "selector"):
self.selector = self.l.selector.copy().clearProps()
for m in self.selector.modules(): m.data = MemoryData(self, m)
self.selector.displayF = lambda m: (k1lib.format.red if m.selected("_memProf_") else k1lib.format.identity)(m.data)
self.startMemory = allocated()
self.linear:List[int] = [] # bytes of each mS's passes
self.linState:List[bool] = [] # selected segments, used in plot
self.linSignature:List[int] = [] # list of mS's signatures
self.startBackwardPoint = None
def startStep(self): return True
def endRun(self):
self.linear = np.array(self.linear)
self.linState = np.array(self.linState); self._updateLinState()
[docs] def run(self):
"""Runs everything"""
with self.cbs.context(), self.cbs.suspendEval(), self.l.model.preserveDevice():
self.cbs.withCuda(); self.l.run(1, 1)
for m in self.selector.modules(): m.data.unhook()
def _updateLinState(self):
"""Change linState, which is the graph's highlight"""
def applyF(m):
for i in range(len(self.linear)):
if self.linSignature[i] == m.signature:
self.linState[i] = m.selected("_memProf_")
self.selector.apply(applyF)
[docs] def css(self, css:str):
"""Selects a small part of the network to highlight"""
self.selector.parse(k1lib.selector.filter(css, "_memProf_"))
self._updateLinState(); print(self.__repr__())
self.selector.clearProps(); self._updateLinState()
def __repr__(self):
plt.figure(dpi=120); plt.grid(True)
l = self.linear; s = self.linState; plt.xlabel("Time")
idx = math.floor(math.log10(l.max())/3); l=l/1000**idx
plt.ylabel(k1lib.format.sizes[idx])
k1lib.viz.plotSegments(range(len(l)), l, s)
plt.axvline(self.startBackwardPoint, linestyle="--")
ax = plt.gca(); ax.text(0.05, 0.05, "forward", transform=ax.transAxes)
ax.text(0.95, 0.05, "backward", ha="right", transform=ax.transAxes); plt.show()
params = k1lib.format.item(sum([p.numel() for p in self.l.model.parameters()]))
return f"""MemoryProfiler (params: {params}):
{k1lib.tab(self.selector.__repr__(intro=False))}
Can...
- mp.css("..."): highlights a particular part of the network
- mp.selector: to get internal k1lib.selector.ModuleSelector object"""