# AUTOGENERATED FILE! PLEASE DON'T EDIT
import numpy as np, matplotlib.pyplot as plt, matplotlib as mpl
from typing import Any, List, Union, Tuple
__all__ = ["perlin3d"]
def interpolant(t):
    return t*t*t*(t*(t*6 - 15) + 10)
[docs]def perlin3d(shape=(100, 100, 100), res=(2, 2, 2), tileable=(False, False, False), interpolant=interpolant):
    """Generate a 3D numpy array of perlin noise. Not my code! All credits go
to the author of this library: https://github.com/pvigier/perlin-numpy
:param shape: The shape of the generated array (tuple of three ints).
    This must be a multiple of res.
:param res: The number of periods of noise to generate along each
    axis (tuple of three ints). Note shape must be a multiple
    of res.
:param tileable: If the noise should be tileable along each axis
    (tuple of three bools). Defaults to (False, False, False).
:param interpolant: The interpolation function, defaults to
    t*t*t*(t*(t*6 - 15) + 10).
:return: A numpy array of shape shape with the generated noise.
:raises ValueError: If shape is not a multiple of res."""
    delta = (res[0] / shape[0], res[1] / shape[1], res[2] / shape[2])
    d = (shape[0] // res[0], shape[1] // res[1], shape[2] // res[2])
    grid = np.mgrid[0:res[0]:delta[0],0:res[1]:delta[1],0:res[2]:delta[2]]
    grid = np.mgrid[0:res[0]:delta[0],0:res[1]:delta[1],0:res[2]:delta[2]]
    grid = grid.transpose(1, 2, 3, 0) % 1
    # Gradients
    theta = 2*np.pi*np.random.rand(res[0] + 1, res[1] + 1, res[2] + 1)
    phi = 2*np.pi*np.random.rand(res[0] + 1, res[1] + 1, res[2] + 1)
    gradients = np.stack(
        (np.sin(phi)*np.cos(theta), np.sin(phi)*np.sin(theta), np.cos(phi)),
        axis=3
    )
    if tileable[0]:
        gradients[-1,:,:] = gradients[0,:,:]
    if tileable[1]:
        gradients[:,-1,:] = gradients[:,0,:]
    if tileable[2]:
        gradients[:,:,-1] = gradients[:,:,0]
    gradients = gradients.repeat(d[0], 0).repeat(d[1], 1).repeat(d[2], 2)
    g000 = gradients[    :-d[0],    :-d[1],    :-d[2]]
    g100 = gradients[d[0]:     ,    :-d[1],    :-d[2]]
    g010 = gradients[    :-d[0],d[1]:     ,    :-d[2]]
    g110 = gradients[d[0]:     ,d[1]:     ,    :-d[2]]
    g001 = gradients[    :-d[0],    :-d[1],d[2]:     ]
    g101 = gradients[d[0]:     ,    :-d[1],d[2]:     ]
    g011 = gradients[    :-d[0],d[1]:     ,d[2]:     ]
    g111 = gradients[d[0]:     ,d[1]:     ,d[2]:     ]
    # Ramps
    n000 = np.sum(np.stack((grid[:,:,:,0]  , grid[:,:,:,1]  , grid[:,:,:,2]  ), axis=3) * g000, 3)
    n100 = np.sum(np.stack((grid[:,:,:,0]-1, grid[:,:,:,1]  , grid[:,:,:,2]  ), axis=3) * g100, 3)
    n010 = np.sum(np.stack((grid[:,:,:,0]  , grid[:,:,:,1]-1, grid[:,:,:,2]  ), axis=3) * g010, 3)
    n110 = np.sum(np.stack((grid[:,:,:,0]-1, grid[:,:,:,1]-1, grid[:,:,:,2]  ), axis=3) * g110, 3)
    n001 = np.sum(np.stack((grid[:,:,:,0]  , grid[:,:,:,1]  , grid[:,:,:,2]-1), axis=3) * g001, 3)
    n101 = np.sum(np.stack((grid[:,:,:,0]-1, grid[:,:,:,1]  , grid[:,:,:,2]-1), axis=3) * g101, 3)
    n011 = np.sum(np.stack((grid[:,:,:,0]  , grid[:,:,:,1]-1, grid[:,:,:,2]-1), axis=3) * g011, 3)
    n111 = np.sum(np.stack((grid[:,:,:,0]-1, grid[:,:,:,1]-1, grid[:,:,:,2]-1), axis=3) * g111, 3)
    # Interpolation
    t = interpolant(grid)
    n00 = n000*(1-t[:,:,:,0]) + t[:,:,:,0]*n100
    n10 = n010*(1-t[:,:,:,0]) + t[:,:,:,0]*n110
    n01 = n001*(1-t[:,:,:,0]) + t[:,:,:,0]*n101
    n11 = n011*(1-t[:,:,:,0]) + t[:,:,:,0]*n111
    n0 = (1-t[:,:,:,1])*n00 + t[:,:,:,1]*n10
    n1 = (1-t[:,:,:,1])*n01 + t[:,:,:,1]*n11
    return ((1-t[:,:,:,2])*n0 + t[:,:,:,2]*n1)