Source code for k1lib.callbacks.profilers.memory

# AUTOGENERATED FILE! PLEASE DON'T EDIT
from k1lib.callbacks import Callback
import k1lib, torch, math, numpy as np; from functools import partial
import matplotlib.pyplot as plt
def allocated() -> int: return torch.cuda.memory_allocated()
class MemoryData:
    def __init__(self, mProfiler, mS:k1lib.selector.ModuleSelector):
        self.mProfiler = mProfiler; self.mS = mS
        self.handles = k1lib.Object.fromDict({"fp":0,"f":0,"b":0})
        self.values = k1lib.Object.fromDict({"fp":0,"f":0,"b":0})
        self.hook()
    def hook(self):
        def hk(v, m, i, o=None):
            """v: type of hook"""
            mP = self.mProfiler
            self.values[v] += (value := allocated() - mP.startMemory)
            if v == "f" or v == "b":
                if v == "b" and mP.startBackwardPoint is None:
                    mP.startBackwardPoint = len(mP.linear)
                mP.linear.append(value); mP.linState.append(0)
                # have to do this because callback order is pretty chaotic, so this
                # is there just to recognize what module belongs to this reading
                mP.linSignature.append(self.mS.signature)
        self.handles.fp = self.mS.nnModule.register_forward_pre_hook(partial(hk, "fp"))
        self.handles.f = self.mS.nnModule.register_forward_hook(partial(hk, "f"))
        self.handles.b = self.mS.nnModule.register_full_backward_hook(partial(hk, "b"))
    def unhook(self):
        self.handles.fp.remove(); self.handles.f.remove(); self.handles.b.remove()
    def __getstate__(self):
        answer = dict(self.__dict__)
        del answer["mS"]; del answer["mProfiler"]; return answer
    def __setstate__(self, state): self.__dict__.update(dict(state))
    def __str__(self):
        fp = f"fp({k1lib.format.size(self.values.fp)})".ljust(14)
        f = f"f({k1lib.format.size(self.values.f)})".ljust(13)
        b = f"b({k1lib.format.size(self.values.b)})".ljust(13)
        delta = f"delta({k1lib.format.size(self.values.f - self.values.fp)})".ljust(17)
        return f"{b} {delta} {fp} {f}"
[docs]class MemoryProfiler(Callback): """Expected to be run only once only. If a new report for a new network architecture is required, then create a new one""" def startRun(self): if not hasattr(self, "selector"): self.selector = self.l.selector.copy().clearProps() for m in self.selector.modules(): m.data = MemoryData(self, m) self.selector.displayF = lambda m: (k1lib.format.red if m.selected("_memProf_") else k1lib.format.identity)(m.data) self.startMemory = allocated() self.linear:List[int] = [] # bytes of each mS's passes self.linState:List[bool] = [] # selected segments, used in plot self.linSignature:List[int] = [] # list of mS's signatures self.startBackwardPoint = None def startStep(self): return True def endRun(self): self.linear = np.array(self.linear) self.linState = np.array(self.linState); self._updateLinState()
[docs] def run(self): """Runs everything""" with self.cbs.context(), self.cbs.suspendEval(), self.l.model.preserveDevice(): self.cbs.withCuda(); self.l.run(1, 1) for m in self.selector.modules(): m.data.unhook()
def _updateLinState(self): """Change linState, which is the graph's highlight""" def applyF(m): for i in range(len(self.linear)): if self.linSignature[i] == m.signature: self.linState[i] = m.selected("_memProf_") self.selector.apply(applyF)
[docs] def css(self, css:str): """Selects a small part of the network to highlight""" self.selector.parse(k1lib.selector.filter(css, "_memProf_")) self._updateLinState(); print(self.__repr__()) self.selector.clearProps(); self._updateLinState()
def __repr__(self): plt.figure(dpi=120); plt.grid(True) l = self.linear; s = self.linState; plt.xlabel("Time") l=l/1000**(idx := math.floor(math.log10(l.max())/3)) plt.ylabel(k1lib.format.sizes[idx]) k1lib.viz.plotSegments(range(len(l)), l, s) plt.axvline(self.startBackwardPoint, linestyle="--") ax = plt.gca(); ax.text(0.05, 0.05, "forward", transform=ax.transAxes) ax.text(0.95, 0.05, "backward", ha="right", transform=ax.transAxes); plt.show() params = k1lib.format.item(sum([p.numel() for p in self.l.model.parameters()])) return f"""MemoryProfiler (params: {params}): {k1lib.tab(self.selector.__repr__(intro=False))} Can... - mp.css("..."): highlights a particular part of the network - mp.selector: to get internal k1lib.selector.ModuleSelector object"""